Implementation of Asynchronous Microservices Architecture on Smart Village Application
Abstract
Keywords
Full Text:
PDFReferences
L. De Lauretis, “From monolithic architecture to microservices architecture,” Proc. - 2019 IEEE 30th Int. Symp. Softw. Reliab. Eng. Work. ISSREW 2019, pp. 93–96, 2019, doi: 10.1109/ISSREW.2019.00050.
C. Richardson, “Pattern: Microservice Architecture,” 2018. .
K. Gos and W. Zabierowski, “The Comparison of Microservice and Monolithic Architecture,” 2020, doi: 10.1109/MEMSTECH49584.2020.9109514.
F. F. Scattone and K. R. Braghetto, “A microservices architecture for distributed Complex Event Processing in smart cities,” Proc. - 2018 IEEE 37th Int. Symp. Reliab. Distrib. Syst. Work. SRDSW 2018, pp. 6–9, 2019, doi: 10.1109/SRDSW.2018.00012.
K. Malyuga, O. Perl, A. Slapoguzov, and I. Perl, “Fault Tolerant Central Saga Orchestrator in RESTful Architecture,” Conf. Open Innov. Assoc. Fruct, vol. 2020-April, pp. 278–283, 2020, doi: 10.23919/FRUCT48808.2020.9087389.
R. Mufrizal and D. Indarti, “Refactoring Arsitektur Microservice Pada Aplikasi Absensi PT. Graha Usaha Teknik,” J. Nas. Teknol. dan Sist. Inf., vol. 5, no. 1, pp. 57–68, 2019, doi: 10.25077/teknosi.v5i1.2019.57-68.
I. F. Rozi, R. Ariyanto, A. N. Pramudita, D. R. Yunianto, and I. F. Putra, “Implementation of microservices architecture on certification information system (case study: LSP P1 State Polytechnic of Malang),” IOP Conf. Ser. Mater. Sci. Eng., vol. 732, no. 1, pp. 0–6, 2020, doi: 10.1088/1757-899X/732/1/012085.
M. Mena, A. Corral, L. Iribarne, and J. Criado, “A Progressive Web Application Based on Microservices Combining Geospatial Data and the Internet of Things,” IEEE Access, vol. 7, pp. 104577–104590, 2019, doi: 10.1109/ACCESS.2019.2932196.
Z. Lyu, H. Wei, X. Bai, and C. Lian, “Microservice-Based Architecture for an Energy Management System,” IEEE Syst. J., vol. 14, no. 4, pp. 5061–5072, 2020, doi: 10.1109/JSYST.2020.2981095.
Q. Zhou, K. Zheng, L. Hou, J. Xing, and R. Xu, “Design and implementation of open LORa for IoT,” IEEE Access, vol. 7, pp. 100649–100657, 2019, doi: 10.1109/ACCESS.2019.2930243.
V. Lenarduzzi, F. Lomio, N. Saarimäki, and D. Taibi, “Does migrating a monolithic system to microservices decrease the technical debt?,” Journal of Systems and Software, vol. 169. 2020, doi: 10.1016/j.jss.2020.110710.
T. Cerny et al., “On Code Analysis Opportunities and Challenges for Enterprise Systems and Microservices,” IEEE Access, vol. 8, pp. 159449–159470, 2020, doi: 10.1109/ACCESS.2020.3019985.
Y. Gan and C. Delimitrou, “The architectural implications of cloud microservices,” arXiv, vol. 17, no. 2, pp. 155–158, 2018.
A. Vivas and J. Sanabria, “A Microservice Approach for a Cellular Automata Parallel Programming Environment,” Electron. Notes Theor. Comput. Sci., vol. 349, 2020, doi: 10.1016/j.entcs.2020.02.016.
J. Herrera and G. Molto, “Toward Bio-Inspired Auto-Scaling Algorithms: An Elasticity Approach for Container Orchestration Platforms,” IEEE Access, vol. 8, pp. 52139–52150, 2020, doi: 10.1109/ACCESS.2020.2980852.
A. Smid, R. Wang, and T. Cerny, “Case Study on data communication in microservice architecture,” Proc. 2019 Res. Adapt. Converg. Syst. RACS 2019, no. June 2020, pp. 261–267, 2019, doi: 10.1145/3338840.3355659.
G. Blinowski, A. Ojdowska, and A. Przybylek, “Monolithic vs. Microservice Architecture: A Performance and Scalability Evaluation,” IEEE Access, vol. 10, 2022, doi: 10.1109/ACCESS.2022.3152803.
N. Nikolakis et al., “A microservice architecture for predictive analytics in manufacturing,” in Procedia Manufacturing, 2020, vol. 51, doi: 10.1016/j.promfg.2020.10.153.
P. Sha, S. Chen, L. Zheng, X. Liu, H. Tang, and Y. Li, “Design and Implement of Microservice System for Edge Computing,” in IFAC-PapersOnLine, 2020, vol. 53, no. 5, doi: 10.1016/j.ifacol.2021.04.137.
N. C. Coulson, S. Sotiriadis, and N. Bessis, “Adaptive Microservice Scaling for Elastic Applications,” IEEE Internet Things J., vol. 7, no. 5, pp. 4195–4202, 2020, doi: 10.1109/JIOT.2020.2964405.
“Communication in a microservice architecture,” Microsoft Documentation Website, 2020.
K. Galbraith, “3 methods for microservice communication,” Logrocket Website, 2019.
G. Ortiz, J. A. Caravaca, A. Garcia-De-Prado, F. Chavez De La O, and J. Boubeta-Puig, “Real-time context-aware microservice architecture for predictive analytics and smart decision-making,” IEEE Access, vol. 7, 2019, doi: 10.1109/ACCESS.2019.2960516.
E. Djogic, S. Ribic, and D. Donko, “Monolithic to microservices redesign of event driven integration platform,” 2018 41st Int. Conv. Inf. Commun. Technol. Electron. Microelectron. MIPRO 2018 - Proc., pp. 1411–1414, 2018, doi: 10.23919/MIPRO.2018.8400254.
Choreography pattern - Azure Architecture Center", Docs.microsoft.com, 2020. [Online]. Available: https://docs.microsoft.com/en-us/azure/architecture/patterns/ choreography. [Accessed: 06- Dec- 2020]
C. K. Rudrabhatla, “Comparison of event choreography and orchestration techniques in Microservice Architecture,” Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 8, 2018, doi: 10.14569/ijacsa.2018.090804.
P. Valderas, V. Torres, and V. Pelechano, “A microservice composition approach based on the choreography of BPMN fragments,” Inf. Softw. Technol., vol. 127, 2020, doi: 10.1016/j.infsof.2020.106370.
F. Dai, Q. Mo, Z. Qiang, B. Huang, W. Kou, and H. Yang, “A Choreography Analysis Approach for Microservice Composition in Cyber-Physical-Social Systems,” IEEE Access, vol. 8, pp. 53215–53222, 2020, doi: 10.1109/ACCESS.2020.2980891.
E. Lee, P. Tan, Y. Cheng, and X. XU, “Web Service Implementation Methodology,” Organ. …, no. September, pp. 1–35, 2005.
A. Avritzer et al., “Scalability Assessment of Microservice Architecture Deployment Configurations: A Domain-based Approach Leveraging Operational Profiles and Load Tests,” J. Syst. Softw., vol. 165, 2020, doi: 10.1016/j.jss.2020.110564.
DOI: http://dx.doi.org/10.18517/ijaseit.12.3.13897
Refbacks
- There are currently no refbacks.
Published by INSIGHT - Indonesian Society for Knowledge and Human Development