Hydrothermal LiTiO2 Cathode and Polyurethane Binder of High Current Lithium Ion Batteries
Abstract
Keywords
Full Text:
PDFReferences
N. Syarif, D. Rohendi, and M. R. Prayogo, “Preparation of Kerosene Soot Carbon Electrode and Its Application in Lithium Ion Battery,” in 2019 6th International Conference on Electric Vehicular Technology (ICEVT), Bali, Indonesia, Nov. 2019, pp. 304–309, doi: 10.1109/ICEVT48285.2019.8993970.
M. Contestabile, S. Panero, and B. Scrosati, “A laboratory-scale lithium-ion battery recycling process,” J. Power Sources, vol. 92, pp. 65–69, 2001.
A. Mishra et al., “Electrode materials for lithium-ion batteries,” Mater. Sci. Energy Technol., vol. 1, no. 2, pp. 182–187, Dec. 2018, doi: 10.1016/j.mset.2018.08.001.
H. Chu, Q. Wu, and J. Huang, “Rice husk derived silicon/carbon and silica/carbon nanocomposites as anodic materials for lithium-ion batteries,” Colloids Surf. Physicochem. Eng. Asp., vol. 558, pp. 495–503, Dec. 2018, doi: 10.1016/j.colsurfa.2018.09.020.
Yohandri, - Zulpadrianto, A. Putra, H. Sanjaya, and J. T. Sri Sumantyo, “A Low-Cost Radar Absorber Based on Palm Shell Active Carbon for Anechoic Chamber,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 9, no. 6, p. 1976, Dec. 2019, doi: 10.18517/ijaseit.9.6.9961.
J. Lee, Y. Wu, and Z. Peng, “Hetero-nanostructured materials for high-power lithium ion batteries,” J. Colloid Interface Sci., vol. 529, pp. 505–519, Nov. 2018, doi: 10.1016/j.jcis.2018.06.025.
L. Jörissen and H. Frey, “ENERGY | Energy Storage,” in Encyclopedia of Electrochemical Power Sources, Elsevier, 2009, pp. 215–231.
N. F. Syabania, N. Syarif, D. Rohendi, M. Wandasari, and W. D. Rengga, “The Light Transmittance and Electrical Conductivity Properties of Gelam Wood Carbon Nanosheet and Its Derivatives,” Indo J Fund Appl Chem, vol. 4, no. 3, pp. 126–131, 2019.
N. Nitta, F. Wu, J. T. Lee, and G. Yushin, “Li-ion battery materials: present and future,” Mater. Today, vol. 18, no. 5, pp. 252–264, Jun. 2015, doi: 10.1016/j.mattod.2014.10.040.
N. Syarif, I. A. Tribidasari, and W. Widayanti, “Binder-less activated carbon electrode from gelam wood for use in supercapacitors,” J Electrochem Sci Eng, vol. 3, no. 2, pp. 37–45, 2014.
T. Kim et al., “Applications of Voltammetry in Lithium Ion Battery Research,” J. Electrochem. Sci. Technol., vol. 11, no. 1, pp. 14–25, Feb. 2020, doi: 10.33961/jecst.2019.00619.
S. B. Aziz, T. J. Woo, M. F. Z. Kadir, and H. M. Ahmed, “A conceptual review on polymer electrolytes and ion transport models,” J. Sci. Adv. Mater. Devices, vol. 3, no. 1, pp. 1–17, Mar. 2018, doi: 10.1016/j.jsamd.2018.01.002.
S. Farahani, “Battery Life Analysis,” in ZigBee Wireless Networks and Transceivers, Elsevier, 2008, pp. 207–224.
A. Tomaszewska et al., “Lithium-ion battery fast charging: A review,” eTransportation, vol. 1, p. 100011, Aug. 2019, doi: 10.1016/j.etran.2019.100011.
B. S. Vishnugopi, A. Verma, and P. P. Mukherjee, “Fast Charging of Lithium-ion Batteries via Electrode Engineering,” J. Electrochem. Soc., vol. 167, no. 9, p. 090508, Mar. 2020, doi: 10.1149/1945-7111/ab7fb9.
N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, and J. L. Dempsey, “A Practical Beginner’s Guide to Cyclic Voltammetry,” J. Chem. Educ., vol. 95, no. 2, pp. 197–206, Feb. 2018, doi: 10.1021/acs.jchemed.7b00361.
A. Ray, A. Roy, S. Saha, and S. Das, “Transition Metal Oxide-Based Nano-materials for Energy Storage Application,” in Science, Technology and Advanced Application of Supercapacitors, T. Sato, Ed. IntechOpen, 2019.
T. Dobbelaere, P. M. Vereecken, and C. Detavernier, “A USB-controlled potentiostat/galvanostat for thin-film battery characterization,” HardwareX, vol. 2, pp. 34–49, Oct. 2017, doi: 10.1016/j.ohx.2017.08.001.
C. Liu, Z. G. Neale, and G. Cao, “Understanding electrochemical potentials of cathode materials in rechargeable batteries,” Mater. Today, vol. 19, no. 2, pp. 109–123, Mar. 2016, doi: 10.1016/j.mattod.2015.10.009.
T.-S. Chen, S.-L. Huang, M.-L. Chen, T.-J. Tsai, and Y.-S. Lin, “Improving Electrochemical Activity in a Semi-V-I Redox Flow Battery by Using a C–TiO 2 –Pd Composite Electrode,” J. Nanomater., vol. 2019, pp. 1–11, Jan. 2019, doi: 10.1155/2019/7460856.
R. Subramani, Y.-H. Tseng, Y.-L. Lee, C.-C. Chiu, S.-S. Hou, and H. Teng, “High Li + transference gel interface between solid-oxide electrolyte and cathode for quasi-solid lithium-ion batteries,” J. Mater. Chem. A, vol. 7, no. 19, pp. 12244–12252, 2019, doi: 10.1039/C9TA02515D.
J. Menzel, E. Frąckowiak, and K. Fic, “Agar-based aqueous electrolytes for electrochemical capacitors with reduced self-discharge,” Electrochimica Acta, vol. 332, p. 135435, Feb. 2020, doi: 10.1016/j.electacta.2019.135435.
L. S. Roselin et al., “Recent Advances and Perspectives of Carbon-Based Nanostructures as Anode Materials for Li-ion Batteries,” Materials, vol. 12, no. 8, p. 1229, Apr. 2019, doi: 10.3390/ma12081229.
R. Suarez-Hernandez, G. Ramos-Sánchez, I. O. Santos-Mendoza, G. Guzmán-González, and I. González, “A Graphical Approach for Identifying the Limiting Processes in Lithium-Ion Battery Cathode Using Electrochemical Impedance Spectroscopy,” J. Electrochem. Soc., vol. 167, no. 10, p. 100529, Jun. 2020, doi: 10.1149/1945-7111/ab95c7.
H. Lv, X. Huang, and Y. Liu, “Analysis on pulse charging–discharging strategies for improving capacity retention rates of lithium-ion batteries,” Ionics, vol. 26, no. 4, pp. 1749–1770, Apr. 2020, doi: 10.1007/s11581-019-03404-8.
DOI: http://dx.doi.org/10.18517/ijaseit.12.3.12683
Refbacks
- There are currently no refbacks.
Published by INSIGHT - Indonesian Society for Knowledge and Human Development