Application of Photocatalyst Material Bentonite Ti Based as Antimicrobial Paint

Restu Kartiko Widi, Emma Savitri, Arief Budhyantoro, Robert Yasaputera, Johan Gunardi

Abstract


The TiO2-Fe3O4-bentonite was used in this study as a photocatalyst material for antimicrobial. The material was coated on a ceramic container. This study is the preliminary study on coatings formulated using TiO2-Fe3O4-bentonite to fight against microbial. This paper aims to emphasize the application of TiO2-Fe3O4-bentonite in the water purification process by adding material into the paint and coating it on ceramic containers as a reactor to help neutralize E. coli and S. Aureus. The TiO2-Fe3O4-bentonite powder was synthesized by the sol-gel method. The photocatalyst powder was exhaled on the surface of the inside painted-walls of the reactor. Some photo-catalytic parameters have been investigated, such as the photocatalyst concentrations and the initial concentration of E. coli starter, and S. Aureus starter. The result showed that the higher the concentration of the photocatalyst material, the more effective its degradation. Also, the highest death rate occurs when the initial concentration of the E. coli starter is at 107 CFU/ml. Photo-degradation in gram-negative bacteria (E. Coli) gives more promising results than the process in gram-positive bacteria (S. aureus). The characterization of the material showed that the photocatalyst material leached during the photo-degradation process. This causes the more extended the reaction takes place; there will be a decrease in bacterial photo-degradation activity. Also, the use of solar light in the photo-catalysis process is more effective than UV light.


Keywords


photo-catalytic; TiO2-Fe3O4-bentonite; E. Coli; S. Aureus; antimicrobial.

Full Text:

PDF

References


M. J. Rodriguez and J. B. Sérodes, “Assessing empirical linear and non-linear modelling of residual chlorine in urban drinking water systems,” Environ. Model. Softw., vol. 14, no. 1, pp. 93–102, 1998, doi: 10.1016/S1364-8152(98)00061-9.

C. Luo, X. Ren, Z. Dai, Y. Zhang, X. Qi, and C. Pan, “Present Perspectives of Advanced Characterisation Techniques in TiO2-Based Photo-catalysts,” ACS Applied Materials and Interfaces, vol. 9, no. 28. pp. 23265–23286, 2017, doi: 10.1021/acsami.7b00496.

Z. Wang, P. Feng, H. Chen, and Q. Yu, “Photo-catalytic performance and dispersion stability of nanodispersed TiO2 hydrosol in electrolyte solutions with different cations,” J. Environ. Sci. (China), vol. 88, pp. 59–71, 2020, doi: 10.1016/j.jes.2019.07.013.

C. Ma, X. Wang, H. Luo, and D. Zhang, “Synthesis of Ag/TiO2 core–shell nanowires with enhanced stability of photo-catalytic activity,” J. Mater. Sci. Mater. Electron., vol. 28, no. 14, pp. 10715–10719, 2017, doi: 10.1007/s10854-017-6847-0.

B. C. B. Salgado, R. A. Cardeal, and A. Valentini, “Photocatalysis and Photo-degradation of Pollutants,” in Nanomaterials Applications for Environmental Matrices, 2019, pp. 449–488.

H. Zhao, F. Pan, and Y. Li, “A review on the effects of TiO2 surface point defects on CO2 photoreduction with H2O,” Journal of Materiomics, vol. 3, no. 1. pp. 17–32, 2017, doi: 10.1016/j.jmat.2016.12.001.

Z. Chen, H. Liu, and J. Su, “Titanium Oxide Photocatalytic Materials and Their Applications in Ceramics,” Ceram. Sci. Eng., vol. 1, no. 1, 2018, doi: 10.24294/cse.v1i1.286.

C. Yang et al., “Highly-efficient photo-catalytic degradation of methylene blue by PoPD-modified TiO2 nanocomposites due to photosensitisation-synergetic effect of TiO2 with PoPD,” Sci. Rep., vol. 7, no. 1, 2017, doi: 10.1038/s41598-017-04398-x.

C. Yang et al., “Enhanced photo-catalytic activity of PANI/TiO2 due to their photosensitisation-synergetic effect,” Electrochim. Acta, vol. 247, pp. 486–495, 2017, doi: 10.1016/j.electacta.2017.07.037.

N. S. Allen, N. Mahdjoub, V. Vishnyakov, P. J. Kelly, and R. J. Kriek, “The effect of crystalline phase (anatase, brookite and rutile) and size on the photo-catalytic activity of calcined polymorphic titanium dioxide (TiO2),” Polym. Degrad. Stab., vol. 150, pp. 31–36, 2018, doi: 10.1016/j.polymdegradstab.2018.02.008.

M. Söyleyici Cergel and F. Atay, “The role of the annealing process in different gas environments on the degradation of the methylene blue organic pollutant by brookite-TiO2 photocatalyst,” Ionics (Kiel)., vol. 25, no. 8, pp. 3823–3836, 2019, doi: 10.1007/s11581-019-02941-6.

C. Li et al., “Extraordinary catalysis induced by titanium foil cathode plasma for degradation of water pollutant,” Chemosphere, vol. 214, pp. 341–348, 2019, doi: 10.1016/j.chemosphere.2018.09.138.

N. Doss, G. Carré, V. Keller, P. André, and N. Keller, “Photocatalytic Decontamination of Airborne T2 Bacteriophage Viruses in a Small-Size TiO2/Β-SiC Alveolar Foam LED Reactor,” Water. Air. Soil Pollut., vol. 229, no. 2, 2018, doi: 10.1007/s11270-017-3676-y.

C. Ai, S. C. Wu, L. Y. Li, Y. Lei, and X. Shao, “Novel magnetically separable γ-Fe2O3/Ag/AgCl/g-C3N4 composite for enhanced disinfection under visible light,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 583, 2019, doi: 10.1016/j.colsurfa.2019.123981.

J. J. Murcia, E. G. Ávila-Martínez, H. Rojas, J. A. Navío, and M. C. Hidalgo, “Study of the E. coli elimination from urban wastewater over photocatalysts based on metallized TiO2,” Appl. Catal. B Environ., vol. 200, pp. 469–476, 2017, doi: 10.1016/j.apcatb.2016.07.045.

J. Mac Mahon, S. C. Pillai, J. M. Kelly, and L. W. Gill, “Solar photo-catalytic disinfection of E. coli and bacteriophages MS2, ΦX174 and PR772 using TiO2, ZnO and ruthenium based complexes in a continuous flow system,” J. Photochem. Photobiol. B Biol., vol. 170, pp. 79–90, 2017, doi: 10.1016/j.jphotobiol.2017.03.027.

S. Giannakis et al., “Iron oxide-mediated semiconductor photo-catalysis vs. heterogeneous photo-Fenton treatment of viruses in wastewater. Impact of the oxide particle size.,” J. Hazard. Mater., vol. 339, pp. 223–231, 2017, doi: 10.1016/j.jhazmat.2017.06.037.

Y. Yamaguchi et al., “Selective Inactivation of Bacteriophage in the Presence of Bacteria by Use of Ground Rh-Doped SrTiO3 Photocatalyst and Visible Light,” ACS Appl. Mater. Interfaces, vol. 9, no. 37, pp. 31393–31400, 2017, doi: 10.1021/acsami.7b07786.

X. Zheng, Z. P. Shen, C. Cheng, L. Shi, R. Cheng, and J. Dong, “Electrospinning Cu-TiO2 nanofibers used for photo-catalytic disinfection of bacteriophage f2: Preparation, optimisation and characterisation,” RSC Adv., vol. 7, no. 82, pp. 52172–52179, 2017, doi: 10.1039/c7ra07770j.

X. Zheng, Z. peng Shen, C. Cheng, L. Shi, R. Cheng, and D. hai Yuan, “Photo-catalytic disinfection performance in virus and virus/bacteria system by Cu-TiO2 nanofibers under visible light,” Environ. Pollut., vol. 237, pp. 452–459, 2018, doi: 10.1016/j.envpol.2018.02.074.

P. Ganguly, C. Byrne, A. Breen, and S. C. Pillai, “Antimicrobial activity of photocatalysts: Fundamentals, mechanisms, kinetics and recent advances,” Applied Catalysis B: Environmental, vol. 225. pp. 51–75, 2018, doi: 10.1016/j.apcatb.2017.11.018.

C. S. Uyguner Demirel, N. C. Birben, and M. Bekbolet, “A comprehensive review on the use of second generation TiO2 photo-catalysts: Micro-organism inactivation,” Chemosphere, vol. 211. pp. 420–448, 2018, doi: 10.1016/j.chemosphere.2018.07.121.

P. V. Laxma Reddy, B. Kavitha, P. A. Kumar Reddy, and K. H. Kim, “TiO2-based photo-catalytic disinfection of microbes in aqueous media: A review,” Environmental Research, vol. 154. pp. 296–303, 2017, doi: 10.1016/j.envres.2017.01.018.

M. J. Abeledo-Lameiro, A. Reboredo-Fernández, M. I. Polo-López, P. Fernández-Ibáñez, E. Ares-Mazás, and H. Gómez-Couso, “Photocatalytic inactivation of the waterborne protozoan parasite Cryptosporidium parvum using TiO2/H2O2 under simulated and natural solar conditions,” Catal. Today, vol. 280, pp. 132–138, 2017, doi: 10.1016/j.cattod.2016.05.046.

V. Binas, D. Venieri, D. Kotzias, and G. Kiriakidis, “Modified TiO2 based photocatalysts for improved air and health quality,” Journal of Materiomics, vol. 3, no. 1. pp. 3–16, 2017, doi: 10.1016/j.jmat.2016.11.002.

R. Hendili, A. Alatrache, M. Ben-Attia, and M. N. Pons, “Antibacterial inactivation of spiramycin after titanium dioxide photo-catalytic treatment,” Comptes Rendus Chim., vol. 20, no. 7, pp. 710–716, 2017, doi: 10.1016/j.crci.2017.02.007.

T. T. T. Huyen, T. T. K. Chi, N. D. Dung, H. Kosslick, and N. Q. Liem, “Enhanced photo-catalytic activity of {110}-faceted TiO2 rutile nanorods in the photo-degradation of hazardous pharmaceuticals,” Nanomaterials, vol. 8, no. 5, 2018, doi: 10.3390/nano8050276.

R. K. Widi, A. Budhyantoro, and E. Savitri, “Use of TiO2-Fe3O4 pillared bentonite as photocatalyst in photo-degradation of basic blue,” J. Chem. Pharm. Res., vol. 7, no. 9, pp. 183–188, 2015.

E. Savitri, R. K. Widi, and A. Budhyantoro, “The effect of the calcinations temperature during synthesis of TiO2-Fe3O4-bentonite as photocatalyst material,” J. Chem. Pharm. Res., vol. 7, no. 9, pp. 70–75, 2015.

R. K. Widi and A. Budhyantoro, “Catalytic performance of TiO2-Fe3O4 supported bentonite for photo-catalytic degradation of phenol,” Int. J. Appl. Eng. Res., vol. 9, no. 23, pp. 18753–18758, 2014.

R. Kartiko Widi, I. Suciani, E. Savitri, R. Reynaldi, and A. Budhyantoro, “Photo-catalytic decolorisation of Basic Blue 41 using TiO2-Fe3O4-bentonite coating applied to ceramic in continuous system,” Chem. Eng. Commun., vol. 207, no. 2, pp. 203–212, 2020, doi: 10.1080/00986445.2019.1578756.

R. K. Widi, E. Savitri, O. Angelina, O. J. S. Caroline, and A. Budhyantoro, “Antibacterial inactivation of Escherichia coli after TiO2-Fe3O4-Bentonite photo-catalytic treatment,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 8, no. 6, pp. 2367–2373, 2018, doi: 10.18517/ijaseit.8.6.3884.

J. M. Navarro Llorens, A. Tormo, and E. Martínez-García, “Stationary phase in gram-negative bacteria,” FEMS Microbiology Reviews, vol. 34, no. 4. pp. 476–495, 2010, doi: 10.1111/j.1574-6976.2010.00213.x.




DOI: http://dx.doi.org/10.18517/ijaseit.10.6.9877

Refbacks

  • There are currently no refbacks.



Published by INSIGHT - Indonesian Society for Knowledge and Human Development