Development of a New Polymer Membrane: Polyvinylidene fluoride/Polyetherimide Blend Membrane

Nita Kusumawati, Agus Budi Santoso, Setya Chendra Wibawa, Pirim Setiarso, Supari Muslim


Porous polyetherimide (PEI)/polyvinylidene fluoride (PVDF) coated flat sheet membranes with different compositions and polyethene glycol (PEG) pyrogenic additives have been prepared by non-solvent induced phase separation for the separation of metal salts and sucrose. By using non-solvent induction phase separation (NIPS), it has succeeded in preparing new members of mixed matrix PVDF membrane with (i) asymmetry pore structure, (ii) porosity 7.19%-18.93%, (iii) pore size 0.196 nm-0.453 nm and (iv) mechanical strength 4262.04-24472.57 N/m2, (vi) permeability respectively of 500.48 L/ for C12H22O11; 642.94 L/ for NaCl; 623.64 L/ for MgCl2; 1060.39 L/ for CaCl2; and 1292.85 L/ for CuSO4. Specifically, increasing PEI levels up to 2(wt.%) - 8 (wt.%) has reduced overall porosity and pore size, thus having a specific impact on mechanical strength, pure water permeability (PWF) and the permeability of the feed solution. The opposite phenomenon is observed when the PEI level reaches 10 (wt.%) - 14 (wt.%). Furthermore, compared to pure PEI membranes, PVDF/PEI composite membranes were observed to have a higher resistance to acids and lower to bases. This condition applies in contrast to pure PVDF membranes. Despite having moderate chemical resistance, PEI/PVDF membranes have excellent characteristics and separation performance compared to pure membranes. This demonstrates its promising potential for separation of soluble metal salts and sucrose produced by various industrial processes compared to PVDF and PEI membranes.


membrane; polyvinylidene fluoride; polyetherimide; soluble metal salt; sucrose.

Full Text:



M. S. Diallo, N. A. Frommer, and M. S. Jhon, “Nanotechnology for sustainable development: Retrospective and outlook,” Journal of Nanoparticle Research, vol. 15, no. 11. 2013, doi: 10.1007/s11051-013-2044-0.

M. Rao Kotte, T. Hwang, J. I. Han, and M. S. Diallo, “A one-pot method for the preparation of mixed matrix polyvinylidene fluoride membranes with in situ synthesised and PEGylated polyethyleneimine particles,” J. Memb. Sci., vol. 474, pp. 277–287, 2015, doi: 10.1016/j.memsci.2014.09.044.

S. Gouda, R. G. Kerry, G. Das, S. Paramithiotis, H. S. Shin, and J. K. Patra, “Revitalisation of plant growth-promoting rhizobacteria for sustainable development in agriculture,” Microbiological Research, vol. 206. pp. 131–140, 2018, doi: 10.1016/j.micres.2017.08.016.

C. M. Papapostolou, E. M. Kondili, D. P. Zafirakis, and G. T. Tzanes, “Sustainable water supply systems for the islands: The integration with the energy problem,” Renew. Energy, vol. 146, pp. 2577–2588, 2020, doi: 10.1016/j.renene.2019.07.130.

M. M. Wagh and V. V. Kulkarni, “Thermal energy demand fulfilment of Kolhapur through modelling and optimisation of integrated renewable energy systems,” Renew. Energy Focus, vol. 29, pp. 114–122, 2019, doi: 10.1016/j.ref.2019.03.004.

X. Wang, Z. Wang, Z. Wang, Y. Cao, and J. Meng, “Tethering of hyperbranched polyols using PEI as a building block to synthesise antifouling PVDF membranes,” Appl. Surf. Sci., vol. 419, pp. 546–556, 2017, doi: 10.1016/j.apsusc.2017.05.037.

N. Kusumawati, P. Setiarso, M. M. Sianita, and S. Muslim, “Transport properties, mechanical behaviour, thermal and chemical resistance of asymmetric flat sheet membrane prepared from PSf/PVDF blended membrane on gauze supporting layer,” Indones. J. Chem., vol. 18, no. 2, pp. 257–264, 2018, doi: 10.22146/ijc.27272.

C. Z. Liang, T. S. Chung, and J. Y. Lai, “A review of polymeric composite membranes for gas separation and energy production,” Progress in Polymer Science, vol. 97. 2019, doi: 10.1016/j.progpolymsci.2019.06.001.

E. Lasseuguette and M. C. Ferrari, “Polymer membranes for sustainable gas separation,” in Sustainable Nanoscale Engineering: From Materials Design to Chemical Processing, 2019, pp. 265–296.

N. Kusumawati, P. Setiarso, S. Muslim, and N. Purwidiani, “Synergistic ability of PSf and pvdf to develop high-performance PSf/PVDF coated membrane for water treatment,” Rasayan J. Chem., vol. 11, no. 1, pp. 260–279, 2018, doi: 10.7324/RJC.2018.1112018.

N. Kusumawati, P. Setiarso, and S. Muslim, “Polysulfone/polyvinylidene fluoride composite membrane: Effect of coating dope composition on membrane characteristics and performance,” Rasayan J. Chem., vol. 11, no. 3, pp. 1034–1041, 2018, doi: 10.31788/RJC.2018.1133020.

E. Elele et al., “Mechanical properties of polymeric microfiltration membranes,” J. Memb. Sci., vol. 591, 2019, doi: 10.1016/j.memsci.2019.117351.

K. H. Oh, Y. H. Ko, and K. J. Kim, “Mechanical properties of amorphous PEI, PES, and PVC up to 11 GPa studied by Brillouin light scattering,” Phys. B Condens. Matter, vol. 576, 2020, doi: 10.1016/j.physb.2019.411722.

U. Sathya, M. Nithya, and Keerthi, “Fabrication and characterisation of fine-tuned Polyetherimide (PEI)/WO3 composite ultrafiltration membranes for antifouling studies,” Chem. Phys. Lett., vol. 744, 2020, doi: 10.1016/j.cplett.2020.137201.

Y. Zhu, W. Xie, J. Li, T. Xing, and J. Jin, “PH-Induced non-fouling membrane for effective separation of oil-in-water emulsion,” J. Memb. Sci., vol. 477, pp. 131–138, 2015, doi: 10.1016/j.memsci.2014.12.026.

M. Vásquez-Rendón and M. L. Álvarez-Láinez, “Tailoring the mechanical, thermal, and flammability properties of high-performance PEI/PBT blends exhibiting dual-phase continuity,” Polymer (Guildf)., vol. 154, pp. 241–252, 2018, doi: 10.1016/j.polymer.2018.09.012.

H. Saleem, L. Trabzon, A. Kilic, and S. J. Zaidi, “Recent advances in nanofibrous membranes: Production and applications in water treatment and desalination,” Desalination, vol. 478. 2020, doi: 10.1016/j.desal.2019.114178.

A. Nasir, F. Masood, T. Yasin, and A. Hameed, “Progress in polymeric nanocomposite membranes for wastewater treatment: Preparation, properties and applications,” Journal of Industrial and Engineering Chemistry, vol. 79. pp. 29–40, 2019, doi: 10.1016/j.jiec.2019.06.052.

D. S. Dlamini, J. Li, and B. B. Mamba, “Critical review of montmorillonite/polymer mixed-matrix filtration membranes: Possibilities and challenges,” Applied Clay Science, vol. 168. pp. 21–30, 2019, doi: 10.1016/j.clay.2018.10.016.

T. H. Bae, J. S. Lee, W. Qiu, W. J. Koros, C. W. Jones, and S. Nair, “A high-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals,” Angew. Chemie - Int. Ed., vol. 49, no. 51, pp. 9863–9866, 2010, doi: 10.1002/anie.201006141.

P. Van Rijn et al., “Challenges and advances in the field of self-assembled membranes,” Chem. Soc. Rev., vol. 42, no. 16, pp. 6578–6592, 2013, doi: 10.1039/c3cs60125k.

G. Dong, H. Li, and V. Chen, “Challenges and opportunities for mixed-matrix membranes for gas separation,” J. Mater. Chem. A, vol. 1, no. 15, pp. 4610–4630, 2013, doi: 10.1039/c3ta00927k.

R. D. C. Ningrum and N. Kusumawati, “Development and characterisation of polysulfone/polyvinylidene flouride blend membrane induced by delayed liquid-liquid demixing,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 6, no. 5, pp. 716–722, 2016, doi: 10.18517/ijaseit.6.5.911.

N. Kusumawati, T. Koestiari, and S. Muslim, “The development of a new polymer membrane: PSF/PVDF blended membrane,” Res. J. Pharm. Biol. Chem. Sci., vol. 7, no. 4, pp. 69–77, 2016.

N. Kusumawati, T. Koestiari, and M. Monica, “The influence of casting solution composition and stirring conditions against mechanical strenght and performance of polyvinylidene fluoride (PVDF)-polysulfone (PSf) composite membrane on textile industrial wastewater treatment,” Res. J. Pharm. Biol. Chem. Sci., vol. 6, no. 1, pp. 271–280, 2015.

C. M. González-Henríquez, M. A. Sarabia-Vallejos, and J. Rodriguez-Hernandez, “Polymers for additive manufacturing and 4D-printing: Materials, methodologies, and biomedical applications,” Progress in Polymer Science, vol. 94. pp. 57–116, 2019, doi: 10.1016/j.progpolymsci.2019.03.001.

G. Bakeri, A. F. Ismail, T. Matsuura, M. S. Abdullah, B. C. Ng, and M. Mashkour, “Effect of PVDF blending on the structure and performance of PEI hollow fiber membrane in CO2 separation process,” Chem. Eng. Res. Des., vol. 104, pp. 367–375, 2015, doi: 10.1016/j.cherd.2015.08.024.

L. Marbelia et al., “Preparation of patterned flat-sheet membranes using a modified phase inversion process and advanced casting knife construction techniques,” J. Memb. Sci., vol. 597, 2020, doi: 10.1016/j.memsci.2019.117621.

S. J. Lim and I. H. Shin, “Graft copolymerisation of GMA and EDMA on PVDF to hydrophilic surface modification by electron beam irradiation,” Nucl. Eng. Technol., vol. 52, no. 2, pp. 373–380, 2020, doi: 10.1016/

J. Zha et al., “Superhydrophobicity of polymer films via fluorine atoms covalent attachment and surface nano-texturing,” J. Fluor. Chem., vol. 200, pp. 123–132, 2017, doi: 10.1016/j.jfluchem.2017.06.011.

C. Sun and X. Feng, “Enhancing the performance of PVDF membranes by hydrophilic surface modification via amine treatment,” Sep. Purif. Technol., vol. 185, pp. 94–102, 2017, doi: 10.1016/j.seppur.2017.05.022.

T. A. Agbaje, S. Al-Gharabli, M. O. Mavukkandy, J. Kujawa, and H. A. Arafat, “PVDF/magnetite blend membranes for enhanced flux and salt rejection in membrane distillation,” Desalination, vol. 436, pp. 69–80, 2018, doi: 10.1016/j.desal.2018.02.012.

Y. Ma, F. Shi, Z. Wang, M. Wu, J. Ma, and C. Gao, “Preparation and characterisation of PSf/clay nanocomposite membranes with PEG 400 as a pore forming additive,” Desalination, vol. 286, pp. 131–137, 2012, doi: 10.1016/j.desal.2011.10.040.

E. P. Setyaningsih, M. Machfudzoh, W. P. Utomo, and H. Fansuri, “Preparation of CaTiO3 asymmetric membranes using polyetherimide as binder polymer,” Indones. J. Chem., vol. 16, no. 1, pp. 20–24, 2016, doi: 10.22146/ijc.21172.

N. Kusumawati, P. Setiarso, A. B. Santoso, S. C. Wibawa, and S. Muslim, “The development of pvdf/pei blended membrane: Effect of stirring time on membrane characteristics and performance,” Rasayan J. Chem., vol. 12, no. 2, pp. 975–986, 2019, doi: 10.31788/RJC.2019.1225104.

F. Liu, N. A. Hashim, Y. Liu, M. R. M. Abed, and K. Li, “Progress in the production and modification of PVDF membranes,” Journal of Membrane Science, vol. 375, no. 1–2. pp. 1–27, 2011, doi: 10.1016/j.memsci.2011.03.014.

C. Van Goethem, M. Mertens, and I. F. J. Vankelecom, “Crosslinked PVDF membranes for aqueous and extreme pH nanofiltration,” J. Memb. Sci., vol. 572, pp. 489–495, 2019, doi: 10.1016/j.memsci.2018.11.036.



  • There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development