Quality of Enriched Liquid Organic Fertilizer from Dairy Cattle Wastes on Closed Agriculture System

Zainal Muktamar, Fahrurrozi Fahrurrozi, Sigit Sudjatmiko, Mohammad Chozin, Nanik Setyowati


Liquid organic fertilizer (LOF) supplementation for solid organic fertilizer can accelerate the availability of plant nutrients. However, the nutrient content of LOF is highly dependent on its sources. The objective of the experiment was to examine the nutrient content of enriched liquid organic fertilizer from dairy cattle wastes. The experiment was conducted at Closed Agriculture Production System Research Station located in Air Duku Village, Bengkulu, Indonesia, at 1054 m above sea level. The experiment was laid out in a Completely Randomized Design with ten treatments and three replications. The treatments consisted of LOF from dairy cattle wastes enriched with Tithonia diversifolia, Ageratum conyzoides, Leucaena leucocephala, and Gliricidia sepium, their combination with phosphate rock, the combination of Tithonia diversifolia, and Ageratum conyzoides, and control. The LOF solution was anaerobically incubated for six weeks. The experiment indicated that during the incubation, solution pH declined for the first two weeks, gradually increased up to week 6. At the end of incubation, control exhibited the highest pH as compared to those with enrichment, indicating that decomposition of green biomass released a considerable amount of hydrogen. Enrichment of LOF considerably increased the contents of C, N, P, K, Ca, and Mg. The addition of phosphate rock to biomasses did not contribute a prominent increase in phosphorus content, possibly due to its low solubility at high pH. LOF enrichment with Tithonia diversifolia and Ageratum conyzoides had the highest N, P, and Mg contents. Therefore, the enrichment is the most potential for LOF production in closed agriculture system.


liquid organic fertilizer; enrichment; closed agriculture system; Tithonia diversifolia; Ageratum conyzoides.

Full Text:



S. Savci, “An agricultural pollutant: chemical fertilizer,” Int J Environ. Sci. Dev, vol. 3, pp. 77–80, 2012.

M. Ruark, L. Bundy, T. Andraski, and A. Peterson, “Fifty years of continuous corn: Effect on soil fertility,” in Proc. Wisconsin Crop Management Conference, 2012, vol. 51, pp. 127–132.

R. N. Tehteh, “Chemical soil degradation as a result of contamination: A review,” J. Soil Sci. Environ. Manag., vol. 6, no. 11, pp. 201–308, 2015. DOI: 10.5897/JSSEM15. 0499.

S. Ge, Z. Zhu, and Y. Jiang, “Long-term impact of fertilization on soil pH and fertility in an apple production system,” J. Soil Sci. Plant Nutr., vol. 18, no. 1, pp. 282–293, 2018. DOI: 10.4067/S0718-95162018005001002.

T. Anggita, Z. Muktamar, and F. Fahrurrozi, “Improvement of selected soil chemical properties and potassium uptake by mung beans after application of liquid organic fertilizer in Ultisol,” Terra J. Land Restor., vol. 1, no. 1, pp. 1–7, 2018.

S. M. Sianturi, Z. Muktamar, and M. Chozin, “Enhancing soil chemical properties and sweet corn growth by solid organic amendments in Ultisol,” Terra J. Land Restor., vol. 2, no. 1, pp. 1–8, 2019. DOI: 10.31186/ terra.2.1.1-8.

Z. Muktamar, B. Justisia, and N. Setyowati, “Quality enhancement of humid tropical soils after application of water hyacinth (Eichornia crassipes) compost,” J. Agric. Technol., vol. 12, no. 7.1, pp. 1211–1227, 2016.

M. Qaswar et al., “Substitution of inorganic nitrogen fertilizer with green manure (GM) increased yield stability by improving C input and nitrogen recovery efficiency in rice-based cropping system,” Agronomy, vol. 9, no. 609, pp. 1–18, 2019. DOI: 10.3390/agronomy9100609.

Z. Muktamar, D. Putri, and N. Setyowati, “Reduction of synthetic fertilizer for sustainable agriculture: Influence of organic and nitrogen fertilizer combination on growth and yield of green mustard,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 6, no. 3, pp. 361–364, 2016, doi: 10.18517/ijaseit.6.3.802.

Z. Muktamar, S. Sudjatmiko, F. Fahrurrozi, N. Setyowati, and M. Chozin, “Soil chemical improvement under application of liquid organic fertilizer in closed agriculture system,” Int. J. Agric. Technol., vol. 13, no. 7.2, pp. 1715–1727, 2017.

A. Rahmah, M. Izzati, and S. Parman, “Pengaruh pupuk organic cair berbahan dasar limbah sawit putih (Brassica chinensis L.) terhadap pertumbuhan tanaman jagung manis (Zea mays L. Var. Saccharata),” Bul. Anat. Dan Fisiol., vol. 12, no. 1, pp. 65–71, 2014. DOI: 10.14710/baf.v22i1.7810.

Z. Muktamar, S. Sudjatmiko, M. Chozin, N. Setyowati, and F. Fahrurrozi, “Sweet corn performance and its major nutrient uptake following application of vermicompost supplemented with liquid organic fertilizer,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 7, no. 2, pp. 602–608, 2017. DOI: 10.18517/ijaseit.7.2.1112.

F. Fahrurrozi, Z. Muktamar, N. Setyowati, S. Sudjatmiko, and M. Chozin, “Comparative effects of soil and foliar applications of tithonia-enriched liquid organic fertilizer on yields of sweet corn in closed agriculture production system,” Agrivita J. Agric. Sci., vol. 41, no. 2, pp. 238–245, 2019. DOI: 10.17503/agrivita.v41i2.1256.

S. Suparhun, M. Anshar, and Y. Tambing, “Pengaruh pupuk organik dan POC dari dari kotoran kambing terhadap pertumbuhan tanaman sawi (Brassica juncea, L),” Agrotekbis, vol. 3, no. 5, pp. 602–611, 2015.

Z. Muktamar, F. Fahrurrozi, D. Dwatmadji, N. Setyowati, S. Sudjatmiko, and M. Chozin, “Selected macronutrients uptake by sweet corn under different rates of liquid organic fertilizer in closed agriculture system,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 6, no. 2, pp. 258–261, 2016: DOI: 10.18517/ijaseit.6.2.749.

F. Fahrurrozi, Z. Muktamar, D. Dwatmadji, N. Setyowati, S. Sudjatmiko, and M. Chozin, “Growth and yield responses of three sweet corn (Zea mays L., var Saccharata) varieties to local based liquid organic fertilizer,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 6, no. 3, pp. 319–323, 2016. DOI: 10.18517/ijaseit.6.3.730.

F. Fahrurrozi, Z. Muktamar, N. Setyowati, S. Sudjatmiko, and M. Chozin, “Evaluation of tithonia-enriched liquid organic fertilizer for organic carrot production,” Int. J. Agric. Technol., vol. 11, no. 8, pp. 1705–1712, 2015.

Y. Sastro and I. P. Lestari, “The Growth and Yield of Sweet Corn Fertilized by Dairy Cattle Effluents Without Chemical Fertilizers in Inceptisols,” J Trop Soils, vol. 16, no. 2, pp. 139–143, 2011. DOI: 10.5400/jts.2011.16.2.139.

M. O. Cardoso, A. P. Oliveira, W. E. Pereira, and A. P. Souza, “Growth, nutrition and yield of eggplant as affected by doses of cattle manure and magnesium thermophosphate plus cow urine,” Hortic. Bras., vol. 27, no. 3, pp. 307–313, 2009: DOI: 10.1590/S0102-05362009000300008.

O. S. Olabode, O. Sola, W. B. Akanbi, G. O. Adesina, and P. A. Babajide, “Evaluation of Tithonia diversifolia (Helmsl) A. Gray for soil improvement,” World J. Agric. Sci., vol. 3, no. 4, pp. 503–507, 2007.

F. Fahrurrozi, Y. Sariasih, Z. Muktamar, N. Setyowati, M. Chozin, and S. Sudjatmiko, “Identification of nutrient content of six potential green biomasses for developing liquid organic fertilizer in closed agricultural production system,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 7, no. 2, pp. 559–565, 2017. DOI: 10.18517/ijaseit.7.2.1889.

S. T. MacGregor, F. C. Miller, K. M. Psarianos, and M. S. Finstein, “Composting Process Control Based on Interaction Between Microbial Heat Output and Temperature †,” Appl. Environ. Microbiol., vol. 41, no. 6, pp. 1321–1330, 1981: DOI: 10.1128/AEM.41.6.1321-1330.1981.

M. U. F. Kirschbaum, “The temperature dependence of organic matter decomposition—still a topic of debate,” Soil Bio Biochem, vol. 38, pp. 2510–2518, 2006.

J. Ryckeboer et al., “A survey of bacteria and fungi occurring during composting and –self-heating processes,” Ann. Microbiol., vol. 53, no. 4, pp. 349–420, 2003.

E. Pagan, R. Barrena, X. Font, and A. Sanchez, “Ammonia emissions from the composting of different organic wastes, Dependency on temperature,” Chemosphere, no. 62, pp. 1534–1542, 2006. DOI: 10.1016/j.chemosphere.2005.06.044.

M. Tuomela, M. Vikman, A. Hatakka, and M. Itavaara, “Biodegradation of lignin in a compost environment: a review,” Bioresour. Technol., no. 72, pp. 169–183, 2000.

S. K. Khanal, W. H. Chen, L. Li, and S. Sung, “Biological hydrogen production: e’ects of pH and intermediate products,” Int. J. Hydrog. Energy, no. 29, pp. 1123 – 1131, 2004. DOI: 10.1016/j.ijhydene.2003.11.002.

K. Fujii, S. Funakawa, C. Hayakawa, S. Sukartiningsih, and T. Kosaki, “Quantification of proton budgets in soils of cropland and adjacent forest in Thailand and Indonesia,” Plant Soil, vol. 316, pp. 241–255, 2009. DOI: 10.1007/s11104-008-9776-0.

F. Hellal, S. El-Sayed, R. Zewainy, and A. Amer, “Importance of phosphate pock application for sustaining agricultural production in Egypt,” Bull. Natl. Res. Cent., vol. 43, pp. 1–11, 2019. DOI: 10.1186/s42269-019-0050-9.

I. Raden, S. S. Fatahillah, M. Fadli, and Suyadi, “Nutrient content of liquid organic fertilizer by various bio-activator and soaking time,” Nusant. Biosci., vol. 9, no. 2, pp. 209–213, 2017: DOI: 10.13057/nusbiosci/n090217.

T. Phibunwatthanawong and N. Riddech, “Liquid organic fertilizer production for growing vegetables under hydroponic condition,” Int. J. Recycl. Org. Waste Agric., vol. 8, pp. 369–380, 2019: DOI: 10.1007/s40093-019-0257-7.

R. Ji, G. Dong, W. Shi, and J. Min, “Effects of liquid organic fertilizers on plant growth and rhizosphere soil characteristics of Chrysanthemum,” Sustainability, vol. 9, no. 841, pp. 1–16, 2017. DOI: 10.3390/ su9050841.

J. Perez, J. Munoz-Dorado, T. d. l. Rubia, and J. Martinez, “Biodegradation and biological treatments of cellulose, hemicellulose, and lignin: an overview,” Int. Biol., no. 5, pp. 53–63, 2002. DOI: 10.1007/s10123-002-0062-3.

M. Brebu and C. Vasile, “Thermal degradation of lignin: A review,” Cellul. Chem. Technol., vol. 44, no. 9, pp. 353–363, 2012..

S. Andersson and S. I. Nelsson, “Influence of pH and temperature on microbial activity substrate availability of soil solution bacteria and leaching of dissolved organic carbon in a mor humus,” Soil Biol. Biochem., vol. 33, no. 9, pp. 1181–1191, 2001.

D. Neina, “The role of soil pH in plant nutrition and soil remediation,” Hindawi Appl. Environ. Soil Sci., vol. 2019, pp. 1–9, 2019. DOI: 10.1155/2019/5794869.

Z. T. Cusumano and M. G. Camaron, “Cittruline protects Streptococcus pyogenes from acid stress using the arginine deiminase pathway and the F1Fo-ATPase,” J. Bacteriol., vol. 197, no. 7, pp. 1288–1296, 2015. DOI: 10.1128/JB.02517-14.

A. C. Braithwaite, “The use of chemical solubility tests in comparing phosphate fertilizer,” Fertil. Res., vol. 12, pp. 185–192, 1987.

W. L. Lindsay, Chemical Equilibria in Soils,” John Wiley and Sons. New York: John Wiley and Sons, 1980.

A. Budelman, “Nutrient composition of the leaf biomass of three selected woody leguminous species,” Agrofor. Syst., vol. 8, pp. 39–51, 1989.

DOI: http://dx.doi.org/10.18517/ijaseit.10.4.5068


  • There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development