Kinetic Study of Pyrolysis of Ulin Wood Residue using Thermogravimetric Analysis
Abstract
Keywords
Full Text:
PDFReferences
I. B. P. Mahardika, W. Trisunaryanti, T. Triyono, D. P. Wijaya, & K. Dewi, “Transesterification of used cooking oil using CaO/MCM-41 catalyst synthesized from lapindo mud by sonochemical method,” Indones. J. Chem., 17, (3), pp. 509–515, Nov. 2017, doi: 10.22146/ijc.26561.
S. Jamilatun et al., “Ex-situ catalytic upgrading of Spirulina platensis residue oil using silica alumina catalyst,” Int. J. Renew. Energy Res., 9, (4), pp. 1733–1740, 2019.
D. R. Wicakso, Sutijan, Rochmadi, & A. Budiman, “Study of catalytic upgrading of biomass tars using Indonesian iron ore,” in AIP Conference Proceedings, Mar. 2017, 1823, (1), p. 020094, doi: 10.1063/1.4978167.
Y. S. Pradana, M. Hartono, & A. Prasetya, “Evaluation of household pyrolitic stove performance: Effect of bottom air apertures,” Int. J. Adv. Sci. Eng. Inf. Technol., 8, (5), pp. 2005–2011, 2018, doi: 10.18517/ijaseit.8.5.3810.
S. Wan, N. Zheng, J. Zhang, & J. Wang, “Role of neutral extractives and inherent active minerals in pyrolysis of agricultural crop residues and bio-oil formations,” Biomass and Bioenergy, 122, (January), pp. 53–62, 2019, doi: 10.1016/j.biombioe.2019.01.010.
H. Weldekidan et al., “Distribution of solar pyrolysis products and product gas composition produced from agricultural residues and animal wastes at different operating parameters,” Renew. Energy, 151, pp. 1102–1109, 2020, doi: 10.1016/j.renene.2019.11.107.
H. Sudibyo, Y. S. Pradana, A. Budiman, & W. Budhijanto, “Municipal Solid Waste Management in Indonesia - A Study about Selection of Proper Solid Waste Reduction Method in D.I. Yogyakarta Province,” Energy Procedia, 143, pp. 494–499, 2017, doi: 10.1016/j.egypro.2017.12.716.
Y. S. Pradana, W. Masruri, F. A. Azmi, E. A. Suyono, H. Sudibyo, & Rochmadi, “Extractive-transesterification of Microalgae Arthrospira sp. Using Methanol-Hexane Mixture as solvent,” Int. J. Renew. Energy Res., 8, (3), pp. 1499–1507, 2018.
Y. S. Pradana & A. Prasetya, “Performance evaluation of household pyrolytic stove: Effect of outer air holes condition,” AIP Conf. Proc., 1823, 2017, doi: 10.1063/1.4978142.
J. Zhang, J. Liu, L. Kou, X. Zhang, & T. Tan, “Bioethanol production from cellulose obtained from the catalytic hydro-deoxygenation (lignin-first refined to aviation fuel) of apple wood,” Fuel, 250, (March), pp. 245–253, 2019, doi: 10.1016/j.fuel.2019.03.020.
L. Y. Vega, L. López, C. F. Valdés, & F. Chejne, “Assessment of energy potential of wood industry wastes through thermochemical conversions,” Waste Manag., 87, pp. 108–118, 2019, doi: 10.1016/j.wasman.2019.01.048.
Y. S. Pradana, Daniyanto, M. Hartono, L. Prasakti, & A. Budiman, “Effect of calcium and magnesium catalyst on pyrolysis kinetic of Indonesian sugarcane bagasse for biofuel production,” Energy Procedia, 158, pp. 431–439, 2019, doi: 10.1016/j.egypro.2019.01.128.
T. Yuan, W. He, G. Yin, & S. Xu, “Comparison of bio-chars formation derived from fast and slow pyrolysis of walnut shell,” Fuel, 261, (August 2019), p. 116450, 2020, doi: 10.1016/j.fuel.2019.116450.
Q. Wang, K. Han, J. Gao, H. Li, & C. Lu, “The pyrolysis of biomass briquettes: Effect of pyrolysis temperature and phosphorus additives on the quality and combustion of bio-char briquettes,” Fuel, 199, pp. 488–496, 2017, doi: 10.1016/j.fuel.2017.03.011.
X. Wang et al., “Biomass derived N-doped biochar as efficient catalyst supports for CO2 methanation,” J. CO2 Util., 34, (September), pp. 733–741, 2019, doi: 10.1016/j.jcou.2019.09.003.
M. P. Remacha, S. Jiménez, & J. Ballester, “Devolatilization of millimeter-sized biomass particles at high temperatures and heating rates. Part 2: Modeling and validation for thermally-thin and -thick regimes,” Fuel, 234, (June), pp. 707–722, 2018, doi: 10.1016/j.fuel.2018.07.017.
A. Soria-Verdugo et al., “Comparison of wood pyrolysis kinetic data derived from thermogravimetric experiments by model-fitting and model-free methods,” Energy Convers. Manag., 212, (January), p. 112818, 2020, doi: 10.1016/j.enconman.2020.112818.
R. K. Mishra & K. Mohanty, “Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis,” Bioresour. Technol., 251, (October 2017), pp. 63–74, 2018, doi: 10.1016/j.biortech.2017.12.029.
T. Xu, F. Xu, Z. Hu, Z. Chen, & B. Xiao, “Non-isothermal kinetics of biomass-pyrolysis-derived-tar (BPDT) thermal decomposition via thermogravimetric analysis,” Energy Convers. Manag., 138, pp. 452–460, 2017, doi: 10.1016/j.enconman.2017.02.013.
V. Dhyani, J. Kumar, & T. Bhaskar, “Thermal decomposition kinetics of sorghum straw via thermogravimetric analysis,” Bioresour. Technol., 245, (August), pp. 1122–1129, 2017, doi: 10.1016/j.biortech.2017.08.189.
S. Sobek & S. Werle, “Kinetic modelling of waste wood devolatilization during pyrolysis based on thermogravimetric data and solar pyrolysis reactor performance,” Fuel, 261, (August 2019), p. 116459, 2020, doi: 10.1016/j.fuel.2019.116459.
A. M. Widiyannita, R. B. Cahyono, A. Budiman, Sutijan, & T. Akiyama, “Study of pyrolysis of ulin wood residues,” AIP Conf. Proc., 1755, 2016, doi: 10.1063/1.4958487.
H. E. Kissinger, “Variation of peak temperature with heating rate in differential thermal analysis,” J. Res. Natl. Bur. Stand. (1934)., 57, (4), p. 217, 1956, doi: 10.6028/jres.057.026.
T. Ozawa, “A New Method of Analyzing Thermogravimetric Data,” Bull. Chem. Soc. Jpn., 38, (11), pp. 1881–1886, 1965, doi: 10.1246/bcsj.38.1881.
J. H. Flynn & L. A. Wall, “A quick, direct method for the determination of activation energy from thermogravimetric data,” J. Polym. Sci. Part B Polym. Lett., 4, (5), pp. 323–328, May 1966, doi: 10.1002/pol.1966.110040504.
R. L. Blaine & H. E. Kissinger, “Homer Kissinger and the Kissinger equation,” Thermochim. Acta, 540, pp. 1–6, 2012, doi: 10.1016/j.tca.2012.04.008.
A. Khawam, “Application of solid-state kinetics to desolvation reactions,” University of Iowa, 2007.
M. Poletto, “Thermogravimetric Analysis and Kinetic Study of Pine Wood Pyrolysis,” Rev. Ciência da Madeira - RCM, 7, (2), pp. 111–118, 2016, doi: 10.12953/2177-6830/rcm.v7n2p111-118.
J. Ge, R. Q. Wang, & L. Liu, “Study on the Thermal Degradation Kinetics of the Common Wooden Boards,” Procedia Eng., 135, pp. 72–82, 2016, doi: 10.1016/j.proeng.2016.01.082.
A. S. Khan et al., “Kinetics and thermodynamic parameters of ionic liquid pretreated rubber wood biomass,” J. Mol. Liq., 223, pp. 754–762, 2016, doi: 10.1016/j.molliq.2016.09.012.
DOI: http://dx.doi.org/10.18517/ijaseit.10.4.3640
Refbacks
- There are currently no refbacks.
Published by INSIGHT - Indonesian Society for Knowledge and Human Development