A Development of Embedded Anomaly Behavior Packet Detection System for IoT Environment using Machine Learning Techniques
Abstract
Keywords
Full Text:
PDFReferences
Columbus, Louis. (2018) IoT market predicted to double by 2021, reaching $520b. [Online]. Available: https://www.forbes.com/sites/ louiscolumbus/2018/08/16/iot-market-predicted-to-double-by-2021-reaching-520b
Khan, M. A. and Salah, K., “IoT security: Review, blockchain solutions, and open challenges,” Future Generation Comput. Syst., vol. 82, 2018, pp. 395-411.
Sharma, Pradip Kumar, and Jong Hyuk Park, “Blockchain based hybrid network architecture for the smart city,” Future Generation Comput. Syst., vol. 86, pp. 650-655, 2018.
Hadar, N., Siboni, S., and Elovici, Y, “A Lightweight Vulnerability Mitigation Framework for IoT Devices,” in Proc. 2017 Workshop on Internet of Things Secur. Privacy, 2017, pp. 71-75.
Ammar, Mahmoud, Giovanni Russello, and Bruno Crispo, “Internet of Things: A survey on the security of IoT frameworks,” J. Inf. Secur. Appl., vol. 38, pp. 8-27, 2018.
T. W. Tseng, C. T. Wu, and F. Lai, “Threat Analysis for Wearable Health Devices and Environment Monitoring Internet of Things Integration System,” IEEE Access, vol. 7, pp. 144983-144994, 2019.
T. A. Ahanger and A. Aljumah, “Internet of Things: A Comprehensive Study of Security Issues and Defense Mechanisms,” IEEE Access, vol. 7, pp. 11020-11028, 2019.
Miloslavskaya, N. and Tolstoy, A., “Internet of Things: information security challenges and solutions,” Cluster Comput., vol. 22, no. 1, pp. 103–119, 2019.
M. Frustaci, P. Pace, G. Aloi, and G. Fortino, “Evaluating Critical Security Issues of the IoT World: Present and Future Challenges,” IEEE Internet of Things J., vol. 5, no. 4, pp. 2483-2495, Aug. 2018.
Poonia A.S., Banerjee C., Banerjee A., and Sharma S.K, “Security Issues in Internet of Things (IoT)-Enabled Systems: Problem and Prospects,” Soft Comput.: Theories Appl., vol. 1053, pp.1419-1423, 2020.
Raza, Shahid, Linus Wallgren, and Thiemo Voigt, “SVELTE: Real-time intrusion detection in the Internet of Things,” Ad hoc netw., vol. 11, no. 8, pp. 2661-2674, 2013.
Adat, Vipindev, and B. B. Gupta, “Security in Internet of Things: issues, challenges, taxonomy, and architecture,” Telecommun. Syst., vol. 67, no.3, pp. 423-441, 2018.
Amouri, A., Alaparthy, V. T., and Morgera, S. D., “Cross layer-based intrusion detection based on network behavior for IoT,” in WAMICON’18, 2018, pp. 1-4.
Amouri, Amar, Vishwa T. Alaparthy, and Salvatore D. Morgera. “A Machine Learning Based Intrusion Detection System for Mobile Internet of Things,” Sensors, vol. 20, no.2, pp. 1-15, 2020.
M. Ramadan, Y. Liao, F. Li, and S. Zhou, “Identity-Based Signature With Server-Aided Verification Scheme for 5G Mobile Systems,” IEEE Access, vol. 8, pp. 51810-51820, 2020.
M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, “Network Anomaly Detection: Methods, Systems and Tools,” IEEE Commun. Surveys Tut., vol. 16, no. 1, pp. 303-336, 2013.
Hamamoto, Anderson Hiroshi, et al., “Network anomaly detection system using genetic algorithm and fuzzy logic,” Expert Syst. Appl., vol. 92, pp. 390-402, 2018.
Zhang, Daokun, et al., “Network representation learning: A survey,” IEEE Trans. Big Data, vol. 6, no. 1, pp. 3-28, 2020.
J. R. Binkley and B. Massey, “Ourmon and Network Monitoring Performance,” in USENIX’05 Ann. Technical Conf., 2005, pp. 95-108.
R. Perdisci, D. Ariu, P. Fogla, G. Giacinto, and W. Lee, “McPAD: A multiple classifier system for accurate payload-based anomaly detection,” J. Comput. Netw., vol. 53, no. 6, pp. 864-881, 2009.
Meidan, Y., Bohadana, M., Shabtai, A., Ochoa, M., Tippenhauer, N. O., Guarnizo, J. D., and Elovici, Y., “Detection of Unauthorized IoT Devices Using Machine Learning Techniques,” arXiv:1709.04647 [cs.CR], Sep. 2017.
M. Miettinen, S. Marchal, I. Hafeez, N. Asokan, A. Sadeghi, and S. Tarkoma, “IoT SENTINEL: Automated Device-Type Identification for Security Enforcement in IoT,” in ICDCS’17, 2017, pp. 2177-2184.
T. D. Nguyen, S. Marchal, M. Miettinen, N. Asokan, and A.-R. Sadeghi, “DÏoT: A Federated Self-learning Anomaly Detection System for IoT,” in ICDCS’19, 2019, pp. 756-767.
Doshi, R., Apthorpe, N., and Feamster, N., “Machine Learning DDoS Detection for Consumer Internet of Things Devices,” in SPW’18, 2018, pp. 29-35.
Microsoft. (2012) SQL Injection. [Online]. Available: https:// docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/ ms161953(v=sql.105)
Symantec, “Symantec Internet Security Threat Report: Trends for July–December 2007 (Executive Summary),” Symantec Corp., vol. 13, Apr. 2008.
G. Choi, Y. Lim, and K. Lee, “A Development of Anomaly Behavior Detection System for IoT Environment using Machine Learning,” in ICICPE’19, Dec. 2019, pp. 63-65.
Chawla, A., Jacob, P., Lee, B., and Fallon, S., “Bidirectional LSTM Autoencoder for Sequence based Anomaly Detection in Cyber Security,” Int. J. Simul. Syst., Sci. & Technol., vol. 20, no. 5, pp. 7.1-7.6, 2019.
Alexandra Murzina, Irina Stepanyuk, Fedor Sakharov, and Arseny Reutov. (2019) Detecting web attacks with a Seq2Seq autoencoder. [Online]. Available: http://blog.ptsecurity.com/2019/02/detecting-web-attacks-with-seq2seq.html
DOI: http://dx.doi.org/10.18517/ijaseit.10.4.12762
Refbacks
- There are currently no refbacks.
Published by INSIGHT - Indonesian Society for Knowledge and Human Development