Development and Performance of a Fuzzy Logic Control System for Temperature and Carbon Dioxide for Red Chili Cultivation in an Aeroponic Greenhouse System

- Alimuddin, Ria Arafiyah, Dewa Made Subrata, Nurul Huda

Abstract


The use of fuzzy logic-based automatic control systems in aeroponic systems is expected to facilitate farming. This paper proposes a novel integrated fuzzy control system for an aeroponic greenhouse. The real-time method considers temperature and carbon dioxide (CO2) effects on red chili cultivation, and the controller is based on control performance or an evaluation of the correlation of parameters. The design a fuzzy control system to control red chili plant temperature and CO2 in an aeroponic system cultivation in a greenhouse based on control performance. The fuzzy control system was developed by using a fuzzy zet, a member function, fuzzification, a set of rules, and defuzzification on a personal computer. Sensors include a DHT11 temperature sensor, a CDM4160 CO2 sensor and 4 actuators: a 12 V pump fan, a gas valve and a lamp that is connected to the Arduino Mega 2560 microcontroller by a relay, and an L298N motor driver for control, as well as an additional Arduino 16x2 LCD screen that displays the temperature and CO2 values read by the sensors. The performance results reported for the temperature and CO2 fuzzy logic control parameters for red chilis cutivation in the aeroponic on greenhouse include the time delay (Td), time rise (Tr), time peak (Tp) and Error steady state (Ess) values. The red chili plants grow well using the proposed method


Keywords


fuzzy control control; temperature; CO2; red chili; aeroponic; greenhouse.

Full Text:

PDF

References


B. Pickersgill, “Genetic Resources and Breeding of Aubergine.pdf,” Euphytica, vol. 93, pp. 129–133, 1997.

L. Perry et al., “Starch fossils and the domestication and dispersal of chili peppers (Capsicum spp. L.) in the Americas,” Science (80-. )., vol. 315, no. 5814, pp. 986–988, 2007, doi: 10.1126/science.1136914.

B. and E. J. Votava and P. W. Bosland, Vegetable and Spice Capsicums. .

A. N. Hardiansyah, E. Sulistyaningsih, and E. T. S. Putra, “Effects of Pyraclostrobin on Growth and Yield of Curly Red Chili (Capsicum Annum L.),” Ilmu Pertan. (Agricultural Sci., vol. 2, no. 1, p. 009, 2017, doi: 10.22146/ipas.12841.

R. S. Ferniah, S. Pujiyanto, and H. P. Kusumaningrum, “Indonesian red chilli (Capsicum annuum L.) capsaicin and its correlation with their responses to pathogenic Fusarium oxysporum,” NICHE J. Trop. Biol., vol. 1, no. 2, p. 7, 2018, doi: 10.14710/niche.1.2.7-12.

D. U. Siswanti and M. F. Lestari, “Growth Rate and Capsaicin Level of Curly Red Chili (Capsicum annum L.) on Biofertilizer and Biogas Sludge Application,” J. Biodjati, vol. 4, no. 1, pp. 126–137, 2019, doi: 10.15575/biodjati.v4i1.4216.

T. J. Blom, W. A. Straver, and W. Ingratta, F. J., Khosla, S., Brown, “Carbon Dioxide in Greenhouses,” Carcinogenesis, vol. 33, no. 11. p. NP, 2012, doi: 10.1093/carcin/bgs042.

C. A. Wirasti, C. Listyowati, and K. Yolanda, “Improvement of Red Chili Pepper Production in Dry Land Area Through Introduction of High Yielding Variety,” no. 3, pp. 87–91, 2018.

Y. S. Mohd, A. M. Arshad, N. Farah, H. Muhamad, and N. J. Sidek, “Potential and Viability of Chilli Cultivation Using Fertigation Technology in Malaysia,” Int. J. Innov. Appl. Stud., vol. 17, no. 4, pp. 1114–1119, 2016.

C. Kittas; N. Katsoulas; T. Bartzanas, “Fao Plant Production And Protection Paper,” in Good Agricultural Practices for greenhouse vegetable production in the South East European countries, 230th ed., D. G. Wilfried Baudoin, Avetik Nersisyan, Artur Shamilov, Alison Hodder, Ed. Roma: FAO, 2017, p. 434.

I. A. Lakhiar, J. Gao, T. N. Syed, F. A. Chandio, and N. A. Buttar, “Modern plant cultivation technologies in agriculture under controlled environment: A review on aeroponics,” J. Plant Interact., vol. 13, no. 1, pp. 338–352, 2018, doi: 10.1080/17429145.2018.1472308.

M. Lee and H. Yoe, “Analysis of environmental stress factors using an artificial growth system and plant fitness optimization,” Biomed Res. Int., vol. 2015, 2015, doi: 10.1155/2015/292543.

Zadeh L.A, “Fuzzy Sets* -,” Inf. Control, vol. 90, no. 1, pp. 103–107, 1965.

Bellman Re and Zadeh L.A, “Decision-Making in a Fuzzy Environment,” Manage. Sci., vol. 17, no. 4, 1970.

C. Lee, “Fuzzy logic in control systems Fuzzy Logic Cntroller-part II,” IEEE Trans. Syst. Man Cybern., vol. 20, no. 2, pp. 419–435, 1990, doi: 10.0.4.85/21.52552.

A. Albaidhani and A. Alsudani, “Fuzzy logic control for NLOS identification method in an indoor environment using UWB technology,” Int. J. Intell. Eng. Syst., vol. 13, no. 1, pp. 270–281, 2020, doi: 10.22266/ijies2020.0229.25.

Ö. Alpay and E. Erdem, “The control of greenhouses based on fuzzy logic using wireless sensor networks,” Int. J. Comput. Intell. Syst., vol. 12, no. 1, pp. 190–203, 2018, doi: 10.2991/ijcis.2018.125905641.

B. Bendjaima, D. Saigaa, and D. E. Khodja, “Fault tolerant control based on adaptive fuzzy sliding mode controller for induction-motors,” Int. J. Intell. Eng. Syst., vol. 10, no. 6, pp. 39–48, 2017, doi: 10.22266/ijies2017.1231.05.

R. R. Shamshiri, J. W. Jones, K. R. Thorp, D. Ahmad, H. C. Man, and S. Taheri, “Review of optimum temperature, humidity, and vapour pressure deficit for microclimate evaluation and control in greenhouse cultivation of tomato: A review,” Int. Agrophysics, vol. 32, no. 2, pp. 287–302, 2018, doi: 10.1515/intag-2017-0005.

J. L. Reyes, R. Montoya, C. Ledesma, and R. Ramírez, “Development Of An Aeroponic System For Vegetable Production,” in Acta Horticulturae, May 2012, no. 947, pp. 153–156, doi: 10.17660/ActaHortic.2012.947.18.

M. Pala, L. Mizenko, M. Mach, and T. Reed, “Aeroponic greenhouse as an autonomous system using intelligent space for agriculture robotics,” Advances in Intelligent Systems and Computing, vol. 274. pp. 83–93, 2014, doi: 10.1007/978-3-319-05582-4_7.

I. Idris and M. I. Sani, “Monitoring and control of aeroponic growing system for potato production,” Proceedings of 2012 IEEE Conference on Control, Systems and Industrial Informatics, ICCSII 2012. pp. 120–125, 2012, doi: 10.1109/CCSII.2012.6470485.

J. Liu and Y. Zhang, “An automatic aeroponics growth system for bamboo seedling and root observation,” Applied Mechanics and Materials, vol. 307. pp. 97–102, 2013, doi: 10.4028/www.scientific.net/AMM.307.97.

A. H. Calori, T. L. Factor, J. C. Feltran, E. Y. Watanabe, C. C. de Moraes, and L. F. V. Purquerio, “Seed potato minituber production in an aeroponic system under tropical conditions: electrical conductivity and plant density,” J. Plant Nutr., vol. 41, no. 17, pp. 2200–2209, 2018, doi: 10.1080/01904167.2018.1497652.

L. Yang, V. Sarath Babu, J. Zou, X. C. Cai, T. Wu, and L. Lin, “The development of an intelligent monitoring system for agricultural inputs basing on DBN-Softmax,” J. Sensors, vol. 2018, 2018, doi: 10.1155/2018/6025381.

B. Center and B. P. Verma, “Fuzzy Logic for Biological and Agricultural Systems,” Artif. Intell. Rev., vol. 12, no. 1–3, pp. 213–225, 1998, doi: 10.1007/978-94-011-5048-4_11.

I. Saraswat et al., “Applications of temperature and humidity monitoring system at aerophonic plants based on IoT,” in MATEC Web of Conferences, 2018, vol. 218, doi: 10.1051/matecconf/201821803017.

M. Azaza, K. Echaieb, F. Tadeo, E. Fabrizio, A. Iqbal, and A. Mami, “Fuzzy Decoupling Control of Greenhouse Climate,” Arab. J. Sci. Eng., vol. 40, no. 9, pp. 2805–2812, 2015, doi: 10.1007/s13369-015-1719-5.




DOI: http://dx.doi.org/10.18517/ijaseit.10.6.12678

Refbacks

  • There are currently no refbacks.



Published by INSIGHT - Indonesian Society for Knowledge and Human Development