Effects of Environmental Conditions on Photovoltaic Generation System Performance with Polycrystalline Panels

Saúl Mejía Ruiz, Marley Vanegas Chamorro, Guillermo Valencia Ocho, Jonathan Fabregas Villegas, Carlos Acevedo Peñaloza

Abstract


Photovoltaic solar energy is the third most widely used renewable source worldwide, after hydroelectric and wind energy, and this energy source requires experimental and theoretical development in specific topics such as the effect of environmental conditions on energy performance. Thus, this study's main objective was to determine the influence that meteorological conditions have on the performance of solar photovoltaic systems, based on measurements from a measurement station installed in the city of Barranquilla-Colombia, to determine the factors that significantly affect the system’s energy efficiency deviation. The experimental results show a dependence of the solar panel energy performance on some weather conditions, which is an uncontrolled phenomenon such as the ambient temperature and the atmosphere's humidity. Also, solar panel temperature and irradiance were the parameters with greater importance in the systems power generation. Also, the panel temperature must be controlled to obtain the desired response, because the panel temperature is inversely proportional to the voltage and directly proportional to the current. However, the negative effect of increased panel temperature in sunny climates is compensated by increased solar hours, so the summer system has less instantaneous efficiency, but it has higher solar output throughout the day. Therefore, solar energy production study should be related to total daily production. 


Keywords


Photovoltaic solar energy; weather conditions; solar systems performance; solar panel temperature.

Full Text:

PDF

References


S., Sera, D., Kerekes, T., & Teodorescu, R., “Diagnostic method for photovoltaic systems based on light I–V measurements,†Solar Energy, vol. 119, pp. 29-44, 2015.

Tang, J. H., Au, M. T., Shareef, H., & Busrah, A. M., “A Strategic Approach Using Representative LV Networks in the Assessment of Technical Losses on LV Network with Solar Photovoltaic,†International Journal on Advanced Science, Engineering and Information Technology, vol. 7(4), pp. 1220-1226, 2017.

Othman, Z., Sulaiman, S. I., Musirin, I., Omar, A. M., Shaari, S., & Rosselan, M. Z.,†Sizing Optimization of Hybrid Stand Alone Photovoltaic System,†International Journal on Advanced Science, Engineering, and Information Technology, vol 7(6), pp. 1991-1997, 2017.

Razak, A., Irwan, Y. M., Leow, W. Z., Irwanto, M., Safwati, I., & Zhafarina, M., “Investigation of the effect temperature on photovoltaic (PV) panel output performanceâ€, International Journal on Advanced Science, Engineering and Information Technology, vol. 6(5), pp. 682-688, 2016.

García, F., Fabregas, J., “Effect of Environmental Factors on the Performance of Photovoltaic Solar Modules Arraysâ€, International Journal of ChemTech Research, vol. 11(1), pp. 23-32, 2018.

Dhimish, M., Holmes, V., Mather, P., & Sibley, M., Novel hot spot mitigation technique to enhance photovoltaic solar panels output power performance. Solar Energy Materials and Solar Cells, vol. 179, pp. 72-79, 2018.

Moaleman, A., Kasaeian, A., Aramesh, M., Mahian, O., Sahota, L., & Tiwari, G. N., “Simulation of the performance of a solar concentrating photovoltaic-thermal collector, applied in a combined cooling heating and power generation system,†Energy conversion and management, vol. 160, pp. 191-208, 2018.

Mahmoud, A., Fath, H., & Ahmed, M., “Enhancing the performance of a solar driven hybrid solar still/humidification-dehumidification desalination system integrated with solar concentrator and photovoltaic panels,†Desalination, vol. 430, pp. 165-179, 2018.

Valencia, G., Fontalvo, A., Cárdenas, Y., Duarte, J., & Isaza, C., “Energy and Exergy Analysis of Different Exhaust Waste Heat Recovery Systems for Natural Gas Engine Based on ORC,†Energies, vol. 12(12), pp. 2378, 2019.

Fernández Díez, P., “Procesos termosolares en baja, media y alta temperaturaâ€, Departamento de Ingeniería Eléctrica y Energética, Universidad de Cantabria, España. 2001.

J., Cepeda, A., Sierra., “Aspectos que afectan la eficiencia en los paneles fotovoltaicos y sus potenciales,†Facultad de Ingeniería Mecánica Universidad Santo Tomás Bogotá, Colombia, 2017.

Jáuregui Ostos, E., “Algunas alteraciones de largo periodo del clima de la Ciudad de México debidas a la urbanización: Revisión y perspectivas,†Investigaciones geográficas, vol. 31, pp. 09-44. 1995.

Prieto, J. I., & Bacaicoa, L. E., “Fundamentos y aplicaciones de la energía solar térmica,†Universidad de Oviedo, Servicio de Publicaciones, España, 1998.

Montoro J., “Energías Renovables: Radiación Solar. Instituto de Investigación de Energías Renovables de Albacete,†Castilla – La Mancha, España, 2007.

Jaramillo, O., “Transporte de energía solar concentrada a través de fibras ópticas: acoplamiento fibra-concentrador y estudio térmico,†Bachelor Thesis, Universidad Autónoma de Morelos, Estado de Morelos, México, 1998.

Portero, S. F., “Radiación ultravioleta. Cátedra de dermatología de la escuela de medicina―Luis Razetti,†Universidad central de Venezuela, Caracas, 2004.

Jáuregui Ostos, E., “Algunas alteraciones de largo periodo del clima de la Ciudad de México debidas a la urbanización: Revisión y perspectivas,†Investigaciones geográficas, vol. 31, pp. 09-44, 1995.

Mattei, M., Notton, G., Cristofari, C., Muselli, M., & Poggi, P., “Calculation of the polycrystalline PV module temperature using a simple method of energy balance,†Renewable energy, vol. 31(4), pp. 553-567, 2006.

Schwingshackl, C., Petitta, M., Wagner, J. E., Belluardo, G., Moser, D., Castelli, M., & Tetzlaff, A., “Wind effect on PV module temperature: Analysis of different techniques for an accurate estimation,†Energy Procedia, vol. 40, pp. 77-86, 2013.




DOI: http://dx.doi.org/10.18517/ijaseit.11.5.9335

Refbacks

  • There are currently no refbacks.



Published by INSIGHT - Indonesian Society for Knowledge and Human Development