Physicochemical and Rheological Characterization of Melon Pulp (Cucumis melo) Cultivated in the North of Bolívar Department, Colombia

Ronald M. Marsiglia, Santander E. Lastra-Ripoll, Luis D. Mieles-Gómez, Luis A. García-Zapateiro

Abstract


Melon (Cucumis melo) is a fruit of great national importance. However, it is not exploited in our region due to producers' insufficient negotiating capacity and the lack of infrastructure and technical training, which causes losses of these products, especially at harvest time. Therefore, it is necessary to study its physicochemical and rheological properties to optimize the different processing methods. The main objective of this research is the study of the physicochemical and rheological properties of fresh melon pulp (Cucumis melo) from the northern area of the Bolívar department, Colombia, as a contribution to science and agro-industry, for which the physicochemical characterization was performed following AOAC methods, and the rheological characterization was performed by flow tests at steady state in a temperature range of 10-60°C. The pulp rheological properties evaluation were analyzed according to the temperature variation. The tests were conducted using a Modular System Rheometer Haake Mars Advanced 60. The pulp yield was 83.74% of the whole fruit; physicochemical parameters were similar to those studied previously by other authors. The melon pulp had a non-Newtonian pseudoplastic behavior (shear thinning) in all cases with reduction of temperature, the relation between the viscosity and the deformation rate adjusted the Carreau-Yasuda model (R2> 0, 97264). These results provide information on the melon pulp rheological behavior and may have potential application in the agro-industrial sector for the design of processes to manufacture products from this raw material.

Keywords


Melon (C.melo); physiochemistry; rheology; pulp; pseudoplastic; apparent viscosity; food industry.

Full Text:

PDF

References


Torrenegra, M., Granados., C., Osorio, M., & León, G. (2015). Method comparison of hydrodistillation microwave radiation-assisted (MWHD) front hydrodistillation (HD) in the extraction of essential oil of Minthostachys mollis. Inf Tecnol. 26(1), 117- 122.

Pantástico, E. (1979.). Fisiología de la recolección, manejo y utilización de frutales y hortalizas tropicales y subtropicales. México, p.15: Editorial Continental S. A.

Agronet. (2017). Recuperado el 30 de 08 de 2018. Ãrea y producción agrícola y pecuaria. Ministerio de Agricultura y Desarrollo rural. Obtenido de http://www.agronet.gov.co/estadistica/Paginas/default.aspx.

Bvenura, C., & Sivakumar, D. (2017). The role of wild fruits and vegetables in delivering a balanced and healthy diet. Food Research International, 99(March), 15–30. https://doi.org/10.1016/j.foodres.2017.06.046

Sanseverino, W., Burgos-Paz, W., Ramos-Onsins, S., Garcia-Mas, J., & Casacuberta, J. (2015). La contribución de los polimorfismos de inserción de transposones, la variación estructural y los SNP a la evolución del genoma del melón. Mol Biol Evol. 32, 2760-2774.

Gómez-García, R., Campos, D. A., Aguilar, C. N., Madureira, A. R., & Pintado, M. (2020). Valorization of melon fruit (Cucumis melo L.) by-products: Phytochemical and Biofunctional properties with Emphasis on Recent Trends and Advances. Trends in Food Science and Technology, 99(August 2019), 507–519. https://doi.org/10.1016/j.tifs.2020.03.033

París, Lev, & Amar. (2012). Medieval emergence of sweet melons, Cucumis melo (Cucurbitaceae). Annals of Botany, 23-33.

Rezig, L., Chouaibi, M., Meddeb, W., Msaada, K., & Hamdi, S. (2019). Chemical composition and bioactive compounds of Cucurbitaceae seeds: Potential sources for new trends of plant oils. Process Safety and Environmental Protection, 127, 73–81. https://doi.org/10.1016/j.psep.2019.05.005

Silva, M. A., Albuquerque, T. G., Alves, R. C., Oliveira, M. B. P. P., & Costa, H. S. (2020). Melon (Cucumis melo L.) by-products: Potential food ingredients for novel functional foods? Trends in Food Science and Technology, 98(July 2018), 181–189. https://doi.org/10.1016/j.tifs.2018.07.005

Mariod, A. A., Saeed Mirghani, M. E., & Hussein, I. (2017). Chapter 19 - Cucumis melo var. cantalupo Cantaloupe (A. A. Mariod, M. E. Saeed Mirghani, & I. B. T.-U. O. and O. S. Hussein (eds.); pp. 107–111). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-809435-8.00019-6

Quintana, S., Granados, C., & Garcia-Zapateiro, L. (2017). Propiedades Reológicas de la Pulpa de Papaya (Carica papaya). Información tecnológica vol 28, 11-16.

Ibarz, A., Garvín, A., & Costa, J. (1996). Rheological behavior of loquat (eriobotrya japonica) juices. Journal of Texture Studies, 27(2), 175-184. https:// doi.org/10.1111/j.1745-4603.1996. tb00067.x

Ortega-Quintana, E., Salcedo-Galván, E., Arrieta-Rivero, R., & Torres-Gallo, R. (2015). Efecto de la temperatura y concentración sobre las propiedades reológicas de la pulpa de mango variedad Tommy Atkins. Rev.ion; 28(2), 79-92.

Zhong, Q. (2019). Chapter 18 - Food Rheology (M. B. T.-H. of F. Kutz Dairy and Food Machinery Engineering (Third Edition) (ed.); pp. 461–481). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-814803-7.00018-X

Tabilo Munizaga, G., & Barbosa Canovas, G. (2005). Rheology for the food industry. Journal of Food Engineering vol 67, 147-156.

Hermida Bun, J. R. (2000). Fundamentos de Ingeniería de Procesos. Tecnología de alimentos.

Day, L., & Golding, M. (2016). Food Structure, Rheology, and Texture (L. Melton, F. Shahidi, & P. B. T.-E. of F. C. Varelis; (125–129). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-08-100596-5.03412-0

Muñoz Puntes, E., Rubio, L., & Cabeza Maria. (2012). Comportamiento de flujo y caracterización fisicoquímica de pulpas de durazno. Scientia Agropecuaria, 107-116.

Figueroa-Florez, J., Barragan-Viloria, K., & Salcedo-Mendoza, J. (2017). Comportamiento reológico en pulpa edulcorada de mango (Mangifera indica L. cv. Magdalena river). Corpoica Cienc Tecnol Agropecuaria, 615-627.

Tucker, G. (2017). Applications of Rheological Data into the Food Industry. 159–175.

Andrade, R. D., Torres, R., Montes, E., Pérez, O. A., Restan, L., & Peña, R. E. (2009). Efecto de la temperatura en el comportamiento reológico de la pulpa de níspero (Achras sapota L.). Facultad de Agronomía vol 26.

Galvis, A. (1992). Tecnología de manejo postcosecha de frutas y hortalizas: Sección de Vegetales. Bogotá.: Instituto de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Colombia.

FDA. (Food and Drug Administration). (2003.). pH aproximado de los alimentos y productos alimenticios.

Rúa, J., López-rodríguez, I., Sanz, J., García-fernández, M. C., Pilar, M., & García-armesto, M. R. (2018). LWT - Food Science and Technology Improving functional properties of “Piel de Sapo†melon juice by addition of a Lippia citriodora natural extract and probiotic-type lactic acid bacteria. 96(October 2017), 75–81.

García, J., Rodríguez, Z., Lugo, J., & Rodríguez, V. (2009). Efecto del cultivar y distancia entre plantas sobre características físicoquímicas del fruto del melón (Cucumis melo L.). Rev. Fac. Agron. v.26 n.2, 141-158.

Villalba, M., Yepes, I., & Arrázola, G. (2006). Caracterización fisicoquimica de frutas de la zona del Sinú para su agroindustrialización. Temas agrarios vol 11 (1), 15-23.

Weaver, R. (1987). Reguladores del crecimiento. Trillas, Mexico, 128-140.

Diaz Ocampo, R., Garcia Zapateiro, L., Franco Gomez, J. M., & Vallejo Torres, C. (2012). Caracterización bromatológica, fisicoquímica microbiológica y reológica de la pulpa de borojó (Borojoa patinoi Cuatrec). Ciencia y Tecnologia, 17-24.

Orqueda, M. E., Torres, S., Verón, H., Pérez, J., Rodriguez, F., Zampini, C., & Isla, M. I. (2021). Physicochemical, microbiological, functional, and sensory properties of frozen pulp of orange and orange-red chilto (Solanum betaceum Cav.) fruits. Scientia Horticulturae, 276, 109736. https://doi.org/https://doi.org/10.1016/j.scienta.2020.109736

Lester, G. (1998). Physicochemical characterization of hybrid honey dew muskmelon fruit (Cucumis melo L. var. inodorus naud.) following maturation, abscission, and post-harvest storage). J. Amer. Soc. Hort. Sci 123 (1), 126-129.

Forlan-Vargas, P., Castoldi, R., De Oliveira Charlo, H., & Trevizan Braz, L. (2008). Qualidade de melão rendilhado (Cucumis melo l.) Em função do sistema de cultivo. Ciênc. agrotec., Lavras, v. 32, n. 1, 137-142.

Prasanna, V., Prabha, T. N., & Tharanathan, R. N. (2007). Fruit ripening phenomena-an overview. Critical Reviews in Food Science and Nutrition, 47(1), 1–19. https://doi.org/10.1080/10408390600976841

Mendes, K. F., Mendes, K. F., Guedes, S. F., Silva, L. C. A. S., & Arthur, V. (2020). Evaluation of physicochemical characteristics in cherry tomatoes irradiated with 60Co gamma-rays on post-harvest conservation. Radiation Physics and Chemistry, 177, 109139. https://doi.org/https://doi.org/10.1016/j.radphyschem.2020.109139

Guerreiro, D., Madureira, J., Silva, T., Melo, R., Santos, P. M. P., Ferreira, A., … Cabo Verde, S. (2016). Post-harvest treatment of cherry tomatoes by gamma radiation: Microbial and physicochemical parameters evaluation. Innovative Food Science & Emerging Technologies, 36, 1–9. https://doi.org/https://doi.org/10.1016/j.ifset.2016.05.008

Alvarez-Arenas, C., Fermín, N., García, J., Peña, E., & Martínez, A. (2013). Evaluación del efecto de la aplicacion de un recubrimientocomestible en melones (Cucumis melo L, var cantaloupe) cortados y almacenados en refrigeración. Saber, Universidad de Oriente, Venezuela.Vol. 25 Nº 2, 218-226.

Ramirez Navas, J. (2006). Fundamentos de Reologia de alimentos. Cali, Colombia: JSR e-books.

Bhandari, P., Singhal, R., & Kale, D. D. (2002). Effect of succinylation on the rheological profile of starch pastes. Carbohydrate Polymers, 365-371.

Quintana, S., Machacon, D., Marsiglia, R., Torregrosa, E., & Garcia-Zapateiro, L. (2018). Steady and Shear Dynamic Rheological Properties of Squash (Cucurbita moschata) pulp. Contemporary Engineering Sciences, Vol. 11, 1013-1024.

Honghui, B., SangGuan, Y., Longkui, C., Rui, Z., Qi, W., & Steve W., C. (2016). Chemical and rheological properties of polysaccharides from fruit body of Auricularia auricular-judae. Food Hydrocolloids, 30-37.

Guerrero, S., & Alzamora. 1998., S. (1998). Effect of pH, Temperature and Glucose Addition on Flow Behaviour of Fruit Purees: II. Peach, Papaya and Mango Purées. Journal of Food Engineering 37, 77-101.

Carreau, P. J. (1972). Rheological equations from molecular network theories. Trans. Soc. Rheol vol 16, 99-127.

Bird, B., Armstrong, R., & Hassager , O. (1987). Dynamics of Polymerics Liquids, vol 1. Estados unidos de america: John Wiley & Sons, 2a.

Baniasadidehkordi, M., & Joyner, H. (2019). The Impact of Formulation on the Rheological, Tribological, and Microstructural Properties of Acid Milk Gels. In H. Joyner (Ed.), Rheology of Semisolid Foods (Food Engineering series). Springer, Cham. https://doi.org/https://doi.org/10.1007/978-3-030-27134-3_10

Castillo, M., Castellon, Y., Quintana, S., & Garcia-Zapateiro, L. (2016). Caracterización reológica de una crema de ahuyama (Cucurbita moschata) y ajonjoli (Sesamum indicum). Agronomia Colombiana, 1139-1142.

Huang, X., Liu, Q., Yang, Y., & He, W. (2020). LWT - Food Science and Technology E ff ect of high-pressure homogenization on sugar beet pulp: Rheological and microstructural properties. 125(January).

Andrade, R., Ortega, F., Montes, E., Torres, R., Perez, O., Castro, M., & Gutierrez, L. (2009). Caracterización fisicoquímica y reológica de la pulpa de guayaba (psidium guajava l.) Variedades híbrido de klom sali, puerto rico, d14 y red. Vitae, revista de la facultad de química farmacéutica volumen 16, 13-18.

Yu, Z., Jiang, S., Cai, J., Cao, X., Zheng, Z., Jiang, S., Wang, H., & Pan, L. (2018). Effect of high-pressure homogenization (HPH) on the rheological properties of taro (Colocasia esculenta (L). Schott) pulp. 50(September), 160–168.

Dutta, D., Dutta, A., Raychaudhuri, U., & Chakrab, R. (2006). Rheological characteristics and thermal degradation kinetics of beta-carotene in pumpkin puree. J. Food Eng., 76, 538–546.

Badin, E. E., Rossi, Y. E., Montenegro, M. A., Ibarz, A., Ribotta, P. D., & Lespinard, A. R. (2020). Thermal processing of raspberry pulp: effect on the color and bioactive compounds. Food and Bioproducts Processing. https://doi.org/https://doi.org/10.1016/j.fbp.2020.08.016

Steffe, J. (1996). Rheological methods in food process engineering. Second Edition. Michigan. Estados Unidos.: Editorial Freeman Press. East Lansing.

Augusto, P., Cristianini, M., & Ibarz, A. (2012). Effect of temperature on dynamic and steady-state shear rheological properties of siriguela (Spondias purpurea L.) pulp, J. Food Eng., 108, no. 2, 283–289.

Dak, M., Verma, R., & Jaaffrey, S. (2008). Rheological properties of tomato concentrate. International Journal of Food Engineering, 4 (7), article 11.

Huang, X., Li, D., & Wang, L. (2017). Characterization of pectin extracted from sugar beet pulp under different drying conditions. Journal of Food Engineering, 211, 1–6. https://doi.org/https://doi.org/10.1016/j.jfoodeng.2017.04.022

Pelegrine, D., Silva, F., & Gasperrato, C. (2002). Rheological behavior of mango and pineapple pulps. LWT- Food Sci Technol, 35(1). 645-648.




DOI: http://dx.doi.org/10.18517/ijaseit.11.1.7620

Refbacks

  • There are currently no refbacks.



Published by INSIGHT - Indonesian Society for Knowledge and Human Development