Seed Coating Formulations for Improving Rhizobia Survival, Growth, and Grain Yield of Common Bean

- Marwanto, Merakati Handajaningsih, Bambang Gonggo Murcitro

Abstract


Coating legume seeds with Rhizobia have met a little success because of the difficulty in supporting bacterial survival on the seed coating agent. Accordingly, these studies aimed (i) to determine the best seed coating formulations to maintain the survival of Rhizobium phaseoli population on the surface of coated bean seed over a storage period of 0, 24, and 48 hours at 400C for laboratory trial, and (ii) to evaluate the best formulations for common bean growth and yield for field trial. Twelve seed coating formulations (SCFs) were used to coat garden bean seeds for the two studies. The results showed that four SCFs were the best for R. phaseoli  survival throughout the storage period. They contained combinations of gum arabic and peat moss (100%), gum arabic and peat moss+biochar (25%:75%), carboxymethyl cellulose and peat moss (100%), and carboxymethyl cellulose and peat moss+biochar (25%:75%). These four Rhizobia seed-coating formulations also promoted the best common bean growth and yield based on nodule number, plant dry weight, and grain yield indicators. Overall, these studies suggest that the four SCFs promoted the highest increase in nodulation, plant biomass production, and grain yield due to their ability to maintain the highest survival of R. phaseoli population on the surface of coated bean seed.


Keywords


seed coating; rhizobium inoculant; inoculant carrier; adhesive; bean seed.

Full Text:

PDF

References


D. Nyfeler, O. Huguenin-Elie, M. Suter, E. Frossard, and A. Lüscher, “Grass-legume mixtures can yield more nitrogen than pure legume stands due to mutual-stimulation of nitrogen uptake from symbiotic and nonsymbiotic sources,” Agric. Ecosyst. Environ., vol. 140, pp. 155–163, 2011.

O. Alberton, G. Kaschuk, and M. Hungria, “Sampling effects on the assessment of genetic diversity of rhizobia associated with soybean and common bean,” Soil Biol. Biochem., vol. 38, pp. 1298–1307, 2006.

W. Broughton, G. Hernandez, M. Blair, S. Beebe, P. Gepts, and J. Vanderleyden, “Beans (Phaseolus spp.): Model food legumes,” Plant Soil, vol. 252, pp. 55–128, 2003.

J. De Luque, J. Rodríguez, and C. Bernardo, “Major constraints and trends for common bean production and commercialization: Establishing priorities for future research,” Agron. Colomb., vol. 32, 423–431, 2014.

Direktorat Jenderal Hortikultura, “Statistik Produksi Hortikultura Tahun 2014,” Jakarta: Direktorat Jenderal Hortikultura-Kementerian Pertanian, 2015.

S. E. Beebe, I. M. Rao, A. M. J. Devi, and J. Polania, “Common beans, biodiversity, and multiple stresses: Challenges of drought resistance in tropical soils,” Crop Past. Sci., vol. 65, pp. 667–675, 2014.

M. Malagnoux. (2007) Arid land forest of the world: Global environmental perspectives. [Online]. Available http://www.fao.org/3/a-ah836e.pdf/

G. W. Mmbaga, K. M. Mtei, and P. A. Ndakidemi, “Extrapolations on the use of Rhizobium inoculants supplemented with phosphorus (P) and potassium (K) on growth and nutrition of legumes,” Agric. Sci., vol. 5, pp. 1207–1226, 2014.

S. Savci, “An agricultural pollutant: Chemical fertilizer international,” J. Environ. Sci. Develop., vol. 3, pp. 77–80, 2012.

Y. Luo, M. Durenkamp, M. DeNobili, Q. Lin, B.J. Devonshire, and P.C. Brookes, “Microbial biomass growth, following incorporation of biochars produced at 350°C or 700°C, in a silty-clay loam soil of high and low pH,” Soil Biol. Biochem., vol. 57, pp. 513–523, 2013.

C. Freire, R. J. Koifman, and S. Koifman, “Hematological and hepatic alterations in Brazillian population heavily exposed to organochlorine pesticide,” J. Toxicol. Environ. Health A, vol. 78, pp. 534–548, 2015.

A. K. Tripti, U. Zeba, K. Vipin, and Anshumali, ”Biochar and flyash inoculated with plant growth promoting rhizobacteria act as potential biofertilizer for luxuriant growth and yield of tomato plant,” J. Environ. Manag., vol. 190, pp. 20–27, 2017.

B. Roshanravan, S. M. Soltani, S. A. Rashid, F. Mahdavi, and M. K. Yusop, “Enhancement of nitrogen release properties of urea-kaolinite fertilizer with chitosan binder,” Chem. Spec. Bioavail., vol. 27, pp. 44–51, 2015.

N. Ameloot, S. DeNeve, K. Jegajeevagan, G. Yildiz, D. Buchan, Y.N. Funkuin, W. Prins, L. Buckaert, and S. Sleutel, “Short-term CO2 and N2O emissions and microbial properties of biochar amended sandy loam soils”, Soil Biol. Biochem., vol. 57, pp. 401–410, 2013.

M.O. Callaghan, “Microbial inoculation of seed for improved crop performance: Issue and opportunities,” Appl. Microbiol. Biotechnol., vol. 100, pp. 5729–5746, 2016.

D. Nyfeler, O. Huguenin-Elie, M. Suter, E. Frossard, and A. Lüscher, “Grass-legume mixtures can yield more nitrogen than legume pure stands due to mutual-stimulation of nitrogen uptake from symbiotic and nonsymbiotic sources,” Agric. Ecosyst. Environ., vol. 140, pp. 155–163, 2011.

O. Alberton, G. Kaschuk, and M. Hungria, “Sampling effects on the assessment of genetic diversity of rhizobia associated with soybean and common bean,” Soil Biol. Biochem., vol. 38, pp. 1298–1307, 2006.

M. Hungria, and M.A.T. Vargas,” Environmental factors affecting N2 fixation in grain legumes in the tropics, with emphasis on Brazil,” Field Crop Exp., vol. 65, pp. 151–164, 2000.

J. I. Vilchez, A. Navas, J. Gonzalez-Lopez, S. C. Arcos, and M. Manzanera, “Biosafety test for plant growth-promoting bacteria: proposed environmental and human safety index (EHSI),” Protoc. Front. Microbiol., vol. 6, pp. 1514, 2016.

R. S. Araujo, T. N. Martin, M. A. Nogueira, S. P. da Cruz, E. L. Souchie, A. S. Nakatani, and M. Hungria, “Preinoculation of soybean seeds treated with agrichemicals up to 30 days before sowing: technological innovation for large-scale agriculture,” Int. J. Microbiol., vol. 2017, 11 pages, 2017.

R. Deaker, R.J. Roughley, and I.R. Kennedy, “Legume seed inoculation technology: A review”, Soil Biol.Biochem., vol. 36, pp. 1275–1288, 2004.

D. Rivera, M. Obando, H. Barbosa, D. Rojas-Tapias, R. Bonilla Buitrago, “Evaluation of polymers for the liquid rhizobial formulation and their influence in the Rhizobium-Cowpea interaction,” Univ. Sci., vol. 19, pp. 265–275, 2014.

H. Mariangela, A. N. Marco, and S. A. Ricardo, “Alternative methods of soybean inoculation to overcome adverse conditions at sowing,” African J. Agric. Res.,vol. 10, pp. 2329–2338, 2015.

M. Glodowska, B. Husk, T. Schwinghame, and D. Smith, “Biochar is a growth-promoting alternative to peat moss for the inoculation of corn with a pseudomonad,” Agron. Sustain. Dev. 36: 21, 2016.

R. S. Oliveira, I. Rocha, Y. Ma, M. Vosatka, and H. Freitas, “Seed coating with arbuscular mycorrhizal fungi as an ecotechnological approach for sustainable agricultural production of common wheat (Triticum aestivum L.),” J. Toxicol. Environ. Health, Part A, 2016.

S. Ehsanfar, and S. A. Modarres-Sanavy, “Crop protection by seed coating,” Commun. Agric. Appl. Biol. Sci., vol. 70, pp. 225–229, 2005.

P. Fernandes Jr., C. da Silva, P. de Oliveira, N. Rumjanek, L. Martins, and G. Xavier, ”Performance of polymer compositions as carrier to cowpea rhizobial inoculant formulations: Survival of rhizobia in pre-inoculated seeds and field efficiency,” African J. Biotechnol., vol. 11, pp. 2945–2951, 2012.

J. Zhou, B. Deng, Y. Zhang, A. B. Cobb, and Z. Zhang, “Molybdate in rhizobial seed-coat formulations improves the production and nodulation of alfalfa. PLoS ONE, vol. 12, 2017.

P. I. Fernandes Jr., T. G. Rohr, P.Jd. Oliveira, G. R. Xavier, and N. G. Rumjanek, “Polymers as carriers for rhizobial inoculant formulations,” Pesquisa Agropecua Brasileira, vol. 44, pp. 1184–1190, 2009.

R. A. Date, “Advances in inoculant technology: A brief review,” Aust. J. Exp. Agr., vol. 41, pp. 321–325, 2001.

D. K. Maheswari, R. C. Dubey, M. Agarwal, S. Dheeman, A. Aeron, and V. K. Bajpai, “Carrier based formulations of biocoenotic consortia of disease suppressive Pseudomonas aeruginosa KRP1 and Bacillus licheniformis KRB1,” Ecol. Eng., vol. 81, pp. 272–277, 2015.

D. Sun, L. Hale, and D. Crowley, “Nutrient supplementation of pinewood biochar for use as a bacterial inoculum carrier,” Biol. Fertil. Soils, vol. 52, pp. 515–522, 2016.

L. Hale, M. Luth, and D. Crowley, “Biochar characteristics relate to its utility as an alternative soil inoculum carrier to peat and vermiculite,” Soil Biol. Biochem., vol. 81, pp. 228–235, 2015.

G. Viveganandan, and K. S. Jauhri, “Growth and survival of phosphate solubilizing bacteria in calcium alginate,” Microbiol. Res., vol. 155, pp. 205–207, 2000.

A. Daza, C. Santamaria, D. N. Rodriguez-Navarro, M. Camacho, R. Orive, and F. Tempramo, “Perlite as a carrier for bacterial inoculants,” Soil Biol. Biochem., vol. 32, pp. 567–572, 2000.

S. J. Vanek, J. Thies, B. Wang, K. Hanley, and J. Lehmann, “Pore size and water activity effects on survival of Rhizobium tropici in biochar inoculant carriers,” J. Microb. Biochem. Technol., vol. 8, pp. 296–306, 2016.

A. A. Ghazi, “Potential for biochar as an alternative carrier to peat moss for the preparation of Rhizobia bioinoculum,” Microb. Res. J. Int., vol. 18, pp.1–9, 2017.

M. Glodowska, T. Schwinghamer, B. Husk, and D. Smith, “Biochar based inoculants improve soybean growth and nodulation,” Agric., Sci., vol. 8, pp. 1048–1064, 2017.

D. Egamberdieva, M. Reckling, and S. Wirth, “Biochar-based Bradyrhizobium inoculum improves growth of lupin (Lupinus angustifolius L.) under drought stress,” European J. Soil Biol., vol. 78, pp. 38–42, 2017.

J. Lehmann, “Bio-energy in the black,” Front. Ecol. Environ., vol. 5, pp. 381–387, 2007.

K. B. Cantrell, P. G. Hunt, M. Uchimiya, J. M. Novak, and K. S. Ro, “Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar,” Bioresource Technol., vol. 107, pp. 419–428, 2012.

I. Kresnawaty, A. Budiani, dan T.W. Darmono, “Dinamika populasi Trichoderma harzianum DT38 pada campuran arang hayati tandan kosong kelapa sawit (TKKS) dan gambut,” Menara Perkebunan, vol. 80, pp. 17–24, 2012.

J. M. Vincent, J.M., 1970. A Manual for the Practical Study of the Root-Nodule Bacteria. Oxford: Blackwell Scientific Publications, 1970.

R. A. Olsen, and L. R. Bakken, “Viability of soil bacteria: Optimization of plate-counting technique and comparison between total counts and plate counts within different size groups,” Microb. Ecol., vol. 13, pp. 59–74, 1987.

P. Somasegaran, and H. J. Heben, Handbook for Rhizobia: Methods in Legume-Rhizobium Technology, New York: Springer-Verlag, 1994.

A. Kumar, and S. K. Maiti, “Effect of organic manures on the growth of Cymbopogon citratus and Chrysopogon zizanioides for the phytoremediation of chromiteasbestos mine waste: A pot scale experiment,” Int. J. Phytorem., vol. 17, pp. 437–447, 2015.

N. Z. Lupyawi, P. E. Olsen, E. S. Sande, H. H. Keyser, M. M. Collins, P. Singleton, and W. A. Rice, “Inoculant quality and its evaluation,” Field Crops Res., vol. 65, pp. 259–270, 2000.




DOI: http://dx.doi.org/10.18517/ijaseit.10.3.5121

Refbacks

  • There are currently no refbacks.



Published by INSIGHT - Indonesian Society for Knowledge and Human Development