Application of Artificial Intelligence in Predicting Oil Production Based on Water Injection Rate

Diyah Rosiani, Muhamad Gibral Walay, Pradini Rahalintar, Arya Dwi Candra, Akhmad Sofyan, Yesaya Arison Haratua


The utilization of artificial intelligence (AI) has become imperative across various domains, including the oil and gas industry, which covers several fields, including reservoirs, drilling, and production. In oil and gas production, conventional methods, such as reservoir simulation, are used to predict the oil production rate. This simulation requires comprehensive data, so each process step takes a long time and is expensive. AI is urgently needed and can be a solution in this case. This research aims to apply AI techniques to forecast oil production rates based on water injection rates from two injection wells. Three wells are connected with a direct line drive pattern. Three different AI methods were applied, including multiple linear polynomial regression (PR), multiple linear regression (MLR), and artificial neural networks (ANN) in constructing oil production rate prediction models. Actual field data of 1180 data are used, including water injection rate data from two injection wells and oil production history data from one production well. The dataset has been split randomly into 80% training and 20% allocated for testing subsets. The training data is used to build predictive models, while the testing data is used to validate model performance. Comparative analysis selects the model with the lowest root mean square error (RMSE) and the highest R^2 test value. Results demonstrate that the ANN model achieves the smallest Root Mean Square Error (RMSE) of 0.142 and the highest R^2 test value of 16.2%, outperforming the PR and MLR methods. The ANN prediction model provides a rapid and efficient approach to estimating oil production rates.


Artificial intelligence; multiple linear regression; polynomial regression; artificial neural network; oil production

Full Text:



K. Lichun, L. He, R. Yili, L. Kai, S. Mingyu, S. Jian, and L. Xin, “Application and development trend of artificial intelligence in petroleum exploration and development,†Petrol. Explor. Develop., Vol. 48, pp.1–14, February 2021, doi: 10.1016/S1876-3804(21)60001-0.

N. Salleh, S. S. Yuhaniz, and N. F. M. Azmi, “Modeling Orbital Propagation Using Regression Technique and Artificial Neural Network,†IJASEIT, Vol. 12, pp. 1279-1286, 2022, doi: 10.18517/ijaseit.12.3.15366.

R. A. Azim, “A new correlation for calculating wellhead oil flow rate using artificial neural network,†Artificial Intelligence in Geosciences, vol. 3, 2022, doi: 10.1016/j.aiig.2022.04.001.

A. Sircar, K. Yadav, K. Rayavarapu, N. Bist, and H. Oza, “Application of machine learning and artificial intelligence in oil and gas industry,†Petroleum Research, vol. 6, pp. 379-391, 2021, doi: 10.1016/j.ptlrs.2021.05.009.

H. H. Alkinani, A. T. T. Al-Hameedi, S. Dunn-Norman, and R. E. Flori, “Applications of Artificial Neural Networks in the Petroleum Industry: A Review,†presented at the SPE Middle East Oil and Gas Show and Conference held in Manama, Bahrain, 2019, doi: 10.2118/195072-MS.

S. Bahaloo, M. Mehrizadeh, and A. Najafi-Marghmaleki, “Review of application of artificial intelligence techniques in petroleum operations,†Petroleum Research, vol. 8, pp.176-182, 2023, doi: 10.1016/j.ptlrs.2022.07.002.

P. Solanki, D. Baldaniya, D. Jogani, B. Chaudhary, M. Shah, and A. Kshirsagar, “Artificial intelligence: New age of transformation in petroleum upstream,†Petroleum Research, vol. 7, pp. 106-114, 2022, doi: 10.1016/j.ptlrs.2021.07.002.

P. Tontiwachwuthikul, C. W. Chan, F. Zeng, Z. Liang, T. Sema, and C. Min, “Recent progress and new developments of applications of artificial intelligence (AI), knowledge-based systems (KBS), and Machine Learning (ML) in the petroleum industry,†Petroleum, vol. 6, pp. 319-320, 2020, doi: 10.1016/j.petlm.2020.08.001.

R. Syah, N. Ahmadian, M. Elveny, S.M. Alizadeh, M. Hosseini, A. Khan, “Implementation of artificial intelligence and support vector machine learning to estimate the drilling fluid density in high-pressure high-temperature wells,†Energy Reports, vol 7, 2021, doi: 10.1016/j.egyr.2021.06.092.

O. E. Agwua, J. U. Akpabioa, and A. Dosunmub, “Artificial neural network model for predicting drill cuttings settling velocity,†Petroleum, vol. 6, 2020, doi: 10.1016/j.petlm.2019.12.003.

F. Faraji, J. O. Ugwu, and P. L. Chong, “Modeling two-phase Z factor of gas condensate reservoirs: Application of Artificial Intelligence (AI),†Journal of Petroleum Science and Engineering, vol. 208, 2022, doi: 10.1016/j.petrol.2021.109787.

D. Rosiani, A. K. Permadi, H. P. S. Siregar, A. Y. Gunawan, and T. Ariadji, “A new CO2-EOR methods screening model based on interdependency parameters,†Applied Sciences, vol. 12, pp. 1-17, 2022, doi: 10.3390/app12083937.

S. Bhattacharyya and A. Vyas, “A novel methodology for fast reservoir simulation of single-phase gas reservoirs using machine learning,†Heliyon, vol. 8, 2022, doi: 10.1016/j.heliyon.2022.e12067.

C. S. W. Ng, M. N. Amar, A. J. Ghahfarokhi, L. S. Imsland, “A Survey on the Application of Machine Learning and Metaheuristic Algorithms for Intelligent Proxy Modeling in Reservoir Simulation,†Computers and Chemical Engineering, vol. 170, 2023, doi: 10.1016/j.compchemeng.2022.108107.

H. Ghorbania, D. A. Woodb, A. Choubinehc, A. Tatard, P. G. Abarghoyie, M. Madanic, and N. Mohamadian, “Prediction of oil flow rate through an orifice flow meter: Artificial intelligence alternatives compared,†Petroleum, vol 6, 2018, doi: 10.1016/j.petlm.2018.09.003.

N. C. Chakra, K. Y. Song, M. M. Gupta, and D. N. Saraf, “An innovative neural forecast of cumulative oil production from a petroleum reservoir employing higher-order neural networks (HONNs),†Journal of Petroleum Science and Engineering, vol. 106, pp.18-33, Jun. 2013, doi: 10.1016/j.petrol.2013.03.004.

A. Sabaa, M. A. El-Ela, A. H. El-Bandi, and M. H.M. Sayyouh, “Artificial Neural Network Model to Predict Production Rate of Electrical Submersible Pump Wells,†SPE Prod & Oper, vol. 38, pp. 63-71, 2023, doi: 10.2118/212284-PA.

P. Sagar, P. Gupta, and I. Kashyap, “A forecasting method with efficient selection of variables in multivariate data sets,†Int. j. inf. tecnol., vol. 13, Jun. 2021, pp. 1039-1046, doi: 10.1007/s41870-021-00619-9.

G. A. Ngige, P. E. Ovuoraye, C. A. Igwegbec, E. Fetahi, J. A. Okeke, A. D. Yakubu, and P. C. Onyechi, “RSM optimization and yield prediction for biodiesel produced from alkali-catalytic transesterification of pawpaw seed extract: Thermodynamics, kinetics, and Multiple Linear Regression analysis,†Digital Chemical Engineering, vol. 6, pp. 2772-5081, Nov. 2022, doi: 10.1016/j.dche.2022.100066.

N. A. Carlson, A. Singh, M. S. Talmadge, Y. Jiang, G. G. Zaimes, S. Li, T. R. Hawkins, L. Sittler, A. Brooker, D. J. Gaspar, R. L. McCormick, and M.M. Ramirez-Corredores, “Economic analysis of the benefits to petroleum refiners for low carbon boosted spark ignition biofuels,†Fuel, vol. 334, Nov. 2022, doi: 10.1016/j.fuel.2022.126183.

M. Ajona, P. Vasanthi, and DS Vijayan, “Application of multiple linear and polynomial regression in the sustainable biodegradation process of crude oil,†Sustainable Energy Technologies and Assessments, vol. 54, Dec. 2022, doi: 10.1016/j.seta.2022.102797.

Y. Kassem, H. Çamur, G. E. Duke, and A. H. Abdelnaby, “Artificial Neural Networks, Quadratic Regression, and Multiple Linear Regression in Modeling Cetane Number of Biodiesels,†in Proc. International Conference on Data Science and Application, Feb. 2023, pp. 217-224, doi: 10.1007/978-981-19-6634-7_16.

N. A. Hazrin, K. L. Chong, Y. F. Huang, A. N. Ahmed, J. L. Ng, C. H. Ko, K. W. Tan, M. Sherif, and A. El-shafie, “Predicting sea levels using ML algorithms in selected locations along coastal Malaysia,†Heliyon, vol. 9, Aug. 2023, doi: 10.1016/j.heliyon.2023.e19426.

A. S. Yusuff, N. B. Ishola, A. O. Gbadamosi, T. M.Azeez, and M. O. Onibonoj, “An artificial intelligence approach to model and optimize biodiesel production from used cooking oil using CaO incorporated zeolite catalyst,†Energy Conversion and Management: X, vol. 20, Sep. 2023, doi: 10.1016/j.ecmx.2023.100452.

L. A. E. Gomez, J. A. G. Gonzalez, and J. M. M. Navarro, “What is happening in shrinking medium-sized cities? A correlational analysis and a multiple linear regression model on the case of Spain,†Cities, vol. 134, Jan. 2023, doi: 10.1016/j.cities.2023.104205.

A. Yalçınkaya, I. G. Balay, Birdal, and S. Enoǧlu, “A new approach using the genetic algorithm for parameter estimation in multiple linear regression with long-tailed symmetric distributed error terms: An application to the Covid-19 data,†Chemometr Intell Lab., vol. 216, June 2021, doi: 10.1016/j.chemolab.2021.104372.

E. Aissaoui, Y. E. A. E. Madani, L. Oughdir, A. Dakkak, and Y. E. Allioui, “A Multiple Linear Regression-Based Approach to Predict Student Performance Ouafae,†AISC, vol. 1102, pp. 9-23, Jan. 2020, doi: 10.1007/978-3-030-36653-7_2.

S. Rath, A. Tripathy, and A. R. Tripathy, “Prediction of new active cases of coronavirus disease (COVID-19) pandemic using multiple linear regression model,†Diabetes & Metabolic Syndrome: Clinical Research & Reviews, vol. 14, pp. 1467-1474, July 2020, doi: 10.1016/j.dsx.2020.07.045.

M. R. Elkharbotly, M. Seddik, and A. Khalifa, “Toward sustainable water: prediction of non-revenue water via artificial neural network and multiple linear regression modelling approach in Egypt,†Ain Shams Engineering Journal, vol. 13, September 2022, doi: 10.1016/j.asej.2021.101673.

H. Alahmer, A. Alahmer, R. Alkhazaleh, and M. I. Al-Amayreh, “Modeling, polynomial regression, and artificial bee colony optimization of SI engine performance improvement powered by acetone–gasoline fuel blends,†Energy Report, vol. 9, pp. 55-64, Jan. 2023, doi: 10.1016/j.egyr.2022.12.102.

S. Sarwar, H. Mokhlis, M. Othman, H. Shareef, L. Wang, N. N. Mansor, A. S. M. Khairuddin, and H. Mohamad, “Application of polynomial regression and MILP for under-frequency load shedding scheme in islanded distribution system,†Alexandria Engineering Journal, vol. 61, Jun 2021, doi: 10.1016/j.aej.2021.06.028.

R. J. Freund, W. J. Wilson, and P. Sa, Regression Analysis Statistical Modeling of a Response Variable, London, UK: Academic Press, 2006.

L. Fausett, Fundamentals of neural networks architectures, algorithms, and applications, Prentice Hall, Inc., London, pp. 320-323, 1994.

A. Ghaemi, M. K. Dehnavi, and Z. Khoshraftar, “Exploring artificial neural network approach and RSM modeling in the prediction of CO2 capture using carbon molecular sieves,†Case Studies in Chemical and Environmental Engineering, vol. 7, 2023, doi: 10.1016/j.cscee.2023.100310.

P. Zafari and A. Ghaemi, “Modeling and optimization of CO2 capture into mixed MEA-PZ amine solutions using machine learning based on ANN and RSM models,†Results in Engineering, vol. 19, Jun. 2023, doi: 10.1016/j.rineng.2023.101279.

J. V. Tu, “Advantages and Disadvantages of Using Artificial Neural Networks versus Logistic Regression for Predicting Medical Outcomes,†Journal of Clinical Epidemiology, vol. 49, March 1996, doi: 10.1016/S0895-4356(96)00002-9.

E. M. Shokir, M. H. Sayyouh, and K. A. Fattah, “Selection and evaluation EOR method using artificial intelligence,†In Proc. Annual International Conference and Exhibition, August 2002, doi: 10.2118/79163-MS.

S. A. Irfan, F. A. Abdulkareem, A. Radman, G. Faugere, and E. Padmanabhan, “Artificial neural network (ANN) modeling for CO2 adsorption on Marcellus Shale,†IOP Conf. Ser.: Earth Environ. Sci., vol. 1003, 2022, doi: 10.1088/1755-1315/1003/1/012029.

P. Singh, P. Bera, S. Bhardwaj, and S. K. Singh, “Predictive models for bond strength of reinforced concrete with the application of ANN,†IOP Conf. Ser.: Earth Environ. Sci., vol. 889, 2021, doi: 10.1088/1755-1315/889/1/012080.

P. Wellyantama and S. Soekirno, “Temperature, pressure, relative humidity and rainfall sensors early error detection system for automatic weather station (AWS) with artificial neural network (ANN) backpropagation,†J. Phys.: Conf. Ser., vol. 1816, 2021, doi: 10.1088/1742-6596/1816/1/012056.

K. Khan, M. A. M. Johari, M. N. Amin, M. I. Khan, and M. Iqbal, “Optimization of colloidal nano-silica based cementitious mortar composites using RSM and ANN approaches,†Results in Engineering, vol. 20, 2023, doi: 10.1016/j.rineng.2023.101390.

H. Cao, B. Cao, C. Xia, Z. Meng, H. Bian, and M. Ding, “Prediction of heat transfer coefficients for steam condensation in the presence of air based on ANN method,†International Journal of Advanced Nuclear Reactor Design and Technology, vol. 5, 2023, doi: 10.1016/j.jandt.2023.07.001.



  • There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development