Research in Electronic Multi-Sensor Accuracy in the Implementation of Soil Fertility Monitoring System Using LoRA

Wahyu Pamungkas Tjiptoyuda, Mas Aly Afandi, Sarah Astiti, I Ketut Agung Enrico, Anis Sirwan Zukhrufi, Rahmat Hardian Putra, - Rohmat


The use of electronic sensors to track the nutrients in the soil is an interesting tool for farmers. This has led to the sale of many different kinds of electronic sensors with different levels of accuracy. The accuracy of this electronic sensor was figured out by comparing the results of the sensor's measurements with the results of lab tests done in different ways. This study compares the accuracy of electronic devices used to measure soil nutrients like nitrogen, phosphorus, potassium, electrical conductivity, water pH, and humidity to measurements made in the lab using the ICP-OES (Inductively coupled plasma-optical emission spectroscopy) method. We used three electronic sensors and a transmission system based on LoRA (Long Range) to measure the nutrients in the soil and put the results on our website. The similarities between electronic sensors and laboratory test parameters include the standard deviation, accuracy value, and correlation test between sensors and from the sensors to laboratory test results. The standard deviation parameter test showed a big value between the electronic sensor and the lab test results. However, none of the three used electronic sensors had a standard deviation number that differed greatly from the others. Except for the pH value of the soil, the electronic sensor's accuracy tests for the other five parameters were not very good compared to the lab tests. Also, the sensor correlation test showed a high correlation, while the correlation test between sensor data and lab test results showed a low correlation.


Electronic sensors; soil nutrients; accuracy; standard deviation; correlation; LoRA

Full Text:



H. D. Foth and B. G. Ellis, Soil Fertility. CRC Press, 2018. doi: 10.1201/9780203739341.

S. G. Surya, S. Yuvaraja, E. Varrla, M. S. Baghini, V. S. Palaparthy, and K. N. Salama, “An in-field integrated capacitive sensor for rapid detection and quantification of soil moisture,” Sensors Actuators, B Chem., vol. 321, no. June, p. 128542, 2020, doi:10.1016/j.snb.2020.128542.

R. S. Freeland, “Review of soil moisture sensing using soil electrical conductivity,” Trans. Am. Soc. Agric. Eng., vol. 32, no. 6, pp. 2190–2194, 1989, doi: 10.13031/2013.31283.

J. Knappett and R. F. Craig, Craig’s Soil Mechanics. CRC Press, 2019. doi: 10.1201/9781351052740.

K. Terzaghi, “Theoretical Soil Mechanics,” Jan. 1943, doi: 10.1002/9780470172766.

S. U. Susha Lekshmi, D. N. Singh, and M. Shojaei Baghini, “A critical review of soil moisture measurement,” Meas. J. Int. Meas. Confed., vol. 54, pp. 92–105, 2014, doi: 10.1016/j.measurement.2014.04.007.

B. Lowery, W. J. Hickey, M. A. C. Arshad, and R. Lal, “Soil Water Parameters and Soil Quality,” Methods Assess. Soil Qual., pp. 143–155, Oct. 2015, doi: 10.2136/SSSASPECPUB49.C8.

N. Sarkar, B. Chandra, K. Viswavidyalaya, and T. Majhi, “Study on soil moisture variations in responding to Tensiometer and soil moisture meter with respect to gravimetric method,” Int. J. Chem. Stud., vol. 7, no. 4, pp. 3179–3188, 2019, doi: 10.13140/RG.2.2.29810.86723.

M. A. Sulthoni and M. A. Rizqulloh, “A Low Cost Microcontroller-based Time Domain Reflectometer for Soil Moisture Measurement,” Proc. Int. Conf. Electr. Eng. Informatics, vol. 2019-July, no. July, pp. 197–200, 2019, doi: 10.1109/ICEEI47359.2019.8988875.

T. Thamrin, I. S. Marpaung, and T. Arief, Penggunaan Perangkat Uji Tanah Sawah (PUTS). Palembang: Balai Pengkajian Teknologi Pertanian Sumater Selatan, 2011.

G. T. Patterson and M. R. Carter, Soil Sampling and Handling, 2nd ed., vol. 44. CRC Press Taylor & Francis Group, 2006.

S. R. Khan, B. Sharma, P. A. Chawla, and R. Bhatia, “Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES): a Powerful Analytical Technique for Elemental Analysis,” Food Anal. Methods 2021 153, vol. 15, no. 3, pp. 666–688, Nov. 2021, doi: 10.1007/S12161-021-02148-4.

D. Perdana, L. Renaldi, and I. Alinursafa, “Performance Analysis of Soil Moisture Monitoring based on Internet of Things with LoRA Communications,” J. Southwest Jiaotong Univ., vol. 55, no. 5, pp. 55–64, 2020, doi: 10.35741/issn.0258-2724.55.5.31.

T. F. Prasetyo, E. A. Frastya, and Enceng Enda S, “Sistem Pendeteksi Kesuburan Tanah Pada Desa Cihaur Kelompok Tani Bina Mandiri,” in Seminar Nasional SINERGI, 2017, pp. 191–198.

H. Marcos and H. Muzaki, “Monitoring Suhu Udara Dan Kelembaban Tanah Pada Budidaya Tanaman Pepaya,” J. Teknol. dan Sist. Tertanam, no. 127, 2022.

N. Effendi, W. Ramadhani, and F. Farida, “Perancangan Sistem Penyiraman Tanaman Otomatis Menggunakan Sensor Kelembapan Tanah Berbasis IoT,” J. CoSciTech (Computer Sci. Inf. Technol., vol. 3, no. 2, pp. 91–98, 2022, doi: 10.37859/coscitech.v3i2.3923.

M. A. Martínez-Gimeno et al., “Mandarin irrigation scheduling by means of frequency domain reflectometry soil moisture monitoring,” Agric. Water Manag., vol. 235, no. July 2019, p. 106151, 2020, doi: 10.1016/j.agwat.2020.106151.

J. Haxhibeqiri, E. De Poorter, I. Moerman, and J. Hoebeke, “A survey of LoRaWAN for IoT: From technology to application,” Sensors (Switzerland), vol. 18, no. 11, 2018, doi: 10.3390/s18113995.

S. Gutierrez, I. Martinez, J. Varona, M. Cardona, and R. Espinosa, “Smart Mobile LoRa Agriculture System based on Internet of Things,” 2019 IEEE 39th Central America and Panama Convention (CONCAPAN XXXIX), Nov. 2019, doi:10.1109/concapanxxxix47272.2019.8977109.

F. Deng, P. Zuo, K. Wen, and X. Wu, “Novel soil environment monitoring system based on RFID sensor and LoRa,” Comput. Electron. Agric., vol. 169, no. December 2019, p. 105169, 2020, doi:10.1016/j.compag.2019.105169.

A. W. Jannah, R. Primananda, and A. Bhawiyuga, “Implementasi Protokol LoRa pada Akuisisi Data Sensor Perikanan menggunakan Drone Agent sebagai Node Perantara,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 4, no. 1, pp. 390–396, 2020.

A. Siddique, B. Prabhu, A. Chaskar, and R. Pathak, “a Review on Intelligent Agriculture Service Platform With Lora Based Wireless Sensor Network,” Int. Res. J. Eng. Technol., vol. 06, no. 02, pp. 2539–2542, 2019.

M. Ji, J. Yoon, J. Choo, M. Jang, and A. Smith, “LoRa-based Visual Monitoring Scheme for Agriculture IoT,” SAS 2019 - 2019 IEEE Sensors Appl. Symp. Conf. Proc., pp. 1–6, 2019, doi:10.1109/SAS.2019.8706100.

L. Kolobe, B. Sigweni, and C. K. Lebekwe, “Systematic literature survey: Applications of LoRa communication,” Int. J. Electr. Comput. Eng., vol. 10, no. 3, pp. 3176–3183, 2020, doi:10.11591/ijece.v10i3.pp3176-3183.

J. Arshad et al., “Implementation of a LoRaWAN Based Smart Agriculture Decision Support System for Optimum Crop Yield,” Sustain., vol. 14, no. 2, pp. 1–20, 2022, doi: 10.3390/su14020827.

R. Gilson and M. Grudsky, “LoRaWAN Capacity trial in Dense urban environment,” 2017.

C. Pham, A. Bounceur, L. Clavier, U. Noreen, and M. Ehsan, Radio Channel Access Challenges in LoRa Low Power Wide Area Networks. INC, 2020.

J. M. Marais, R. Malekian, and A. M. Abu-Mahfouz, “LoRa and LoRaWAN testbeds: A review,” 2017 IEEE AFRICON Sci. Technol. Innov. Africa, AFRICON 2017, pp. 1496–1501, 2017, doi:10.1109/AFRCON.2017.8095703.

M. H. Habaebi, I. J. Chowdhury, M. R. Islam, and N. A. B. Zainal, “Effects of shadowing on LoRa LPWAN radio links,” Int. J. Electr. Comput. Eng., vol. 7, no. 6, pp. 2970–2976, 2017, doi:10.11591/ijece.v7i6.pp2970-2976.

G. a Hufford, a G. Longley, and W. a Kissick, “A Guide to the Use of the ITS Irregular Terrain Model in the Area Prediction Mode,” 1982.

A. Gutiérrez-Gómez et al., “A propagation study of LoRA P2P links for IoT applications: The case of near-surface measurements over semitropical rivers,” Sensors, vol. 21, no. 20, 2021, doi:10.3390/s21206872.



  • There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development