Increasing Fe Content in Rice Plants with the Application Liquid Fertilizer of Moringa oleifera and Golden Snail

Srie Juli Rachmawati, Edi Purwanto, Amalia Tetrani Sakya, Widyatmani Sih Dewi

Abstract


Increasing iron (Fe) content in rice is needed because Fe is a critical mineral that plays a crucial role in body metabolisms, such as a form of hemoglobin, antibody production, and a catalyst for several compounds. Meanwhile, the Fe absorption by rice plants is relatively low. Moringa oleifera and golden snail contain high Fe, potentially liquid fertilizer ingredients. This research aims to increase Fe uptake and Fe content of rice plants by application of liquid fertilizer of Moringa oleifera and golden snail. The study used a completely randomized design with two factors. The first factor is the composition of liquid organic fertilizer (P), six levels (P0: without fertilizer, P1: fresh extract of Moringa leaf, P2: fermented Moringa leaf, P3: fresh extract of Golden snail, P4: fermented Golden snail, P5: Mixed 1:1 by volume fermented of Moringa leaf and golden snail). The second factor is liquid fertilizer concentrations (K), which are four levels (K1: 2%, K2: 4%, K3: 6%, and K4: 8% concentration). Repetition of treatment three times. The results showed that the treatment affected increasing fresh weight of the plant, dry weight of the plant, 100 grain weight, number of leaves, total chlorophyll, and Fe content. The fermented mixture of Moringa and golden snail at 4% concentration increased the Fe available in the soil by 6,677% or 4,788% higher than the control. The fermented Moringa leaf with an 8% concentration increased Fe in rice, which was 8,165% or 30.50% higher than the control.

Keywords


Iron (Fe); paddy; liquid organic fertilizer

Full Text:

PDF

References


Kumar, A., Sharma, E., Marley, A., Samaan, M. A., and Brookes, M. J. Iron deficiency anaemia: pathophysiology, assessment, practical management. BMJ open gastroenterology, 9(1), e000759. 2022. doi:10.1136/bmjgast-2021-000759.

Tsilika, M., Mitrou, J., Antonakos, N., Tseti, I. K., Damoraki, G., Leventogiannis, K., and Giamarellos-Bourboulis, E. J. An active new formulation of iron carried by aspartyl casein for iron-deficiency anemia: results of the ACCESS trial. Annals of Hematology, 102(6), 1341-1349. 2023. doi.org/10.1007/s00277-023-05197-3.

Tian, Y., Tian, Y., Yuan, Z., Zeng, Y., Wang, S., Fan, X., and Yang, M. Iron metabolism in aging and age-related diseases. International journal of molecular sciences, 23(7), 3612. 2022. doi.org/10.3390/ijms23073612.

Munro, M. G., Mast, A. E., Powers, J. M., Kouides, P. A., O’Brien, S. H., Richards, T., and Levy, B. S. The relationship between heavy menstrual bleeding, iron deficiency, and iron deficiency anemia. American journal of obstetrics and gynecology. 229(1), 1-9. 2023. doi.org/10.1016/j.ajog.2023.01.017.

Lanas, A., Andrews, J. M., Lau, J., Toruner, M., Bromley, S. E., and Gralnek, I. M. Management of ironâ€deficiency anemia following acute gastrointestinal hemorrhage: A narrative analysis and review. Journal of Gastroenterology and Hepatology, 38(1), 23-33. 2023. doi.org/10.1111/jgh.16033.

Savarese, G., von Haehling, S., Butler, J., Cleland, J. G., Ponikowski, P., and Anker, S. D. Iron deficiency and cardiovascular disease. European heart journal, 44(1), 14-27. 2023. doi.org/10.1093/eurheartj/ehad043.

Guardiola-Márquez, C. E., Santos-Ramírez, M. T., Segura-Jiménez, M. E., Figueroa-Montes, M. L., and Jacobo-Velázquez, D. A. Fighting Obesity-Related Micronutrient Deficiencies through Biofortification of Agri-Food Crops with Sustainable Fertilization Practices. Plants, 11(24), 3477. 2022. doi.org/10.3390/plants11243477.

Abd El-Hack, M. E., Alqhtani, A. H., Swelum, A. A., El-Saadony, M. T., Salem, H. M., Babalghith, A. O., and El-Tarabily, K. A. Pharmacological, nutritional and antimicrobial uses of Moringa oleifera Lam. leaves in poultry nutrition: an updated knowledge. Poultry science, 101(9), 102031. 2022. doi.org/10.1016/j.psj.2022.102031.

Sharma, K., Kumar, M., Waghmare, R., Suhag, R., Gupta, O. P., Lorenzo, J. M., and Kennedy, J. F. Moringa (Moringa oleifera Lam.) polysaccharides: Extraction, characterization, bioactivities, and industrial application. International Journal of Biological Macromolecules, 209, 763-778. 2022. doi.org/10.1016/j.ijbiomac.2022.04.047.

WÅ‚och, W., Iqbal, M., and Jura-Morawiec, J. Calculating the Growth of Vascular Cambium in Woody Plants as the Cylindrical Surface. The Botanical Review, 1-13. 2023. doi.org/10.1007/s12229-023-09291-z.

El-Ramady, H., Hajdú, P., Törős, G., Badgar, K., Llanaj, X., Kiss, A., and Prokisch, J. Plant nutrition for human health: A pictorial review on plant bioactive compounds for sustainable agriculture. Sustainability, 14(14), 8329. 2022. doi.org/10.3390/su14148329.

Dzuvor, C. K., Pan, S., Amanze, C., Amuzu, P., Asakiya, C., and Kubi, F. Bioactive components from Moringa oleifera seeds: production, functionalities and applications–a critical review. Critical Reviews in Biotechnology, 42(2), 271-293. 2022. doi.org/10.1080/07388551.2021.1931804.

Buthelezi, N. M. D., Ntuli, N. R., Mugivhisa, L. L., and Gololo, S. S. Moringa oleifera Lam. Seed Extracts Improve the Growth, Essential Minerals, and Phytochemical Constituents of Lessertia frutescens L. Horticulturae, 9(8), 886. 2023. doi.org/10.3390/horticulturae9080886

Johnson, R., Vishwakarma, K., Hossen, M. S., Kumar, V., Shackira, A. M., Puthur, J. T., and Hasanuzzaman, M. Potassium in plants: Growth regulation, signaling, and environmental stress tolerance. Plant Physiology and Biochemistry, 172, 56-69. 2022. doi.org/10.1016/j.plaphy.2022.01.001

Horn, L., Shakela, N., Mutorwa, M. K., Naomab, E., and Kwaambwa, H. M. Moringa oleifera as a sustainable climate-smart solution to nutrition, disease prevention, and water treatment challenges: a review. Journal of Agriculture and Food Research, 100397. 2022. doi.org/10.1016/j.jafr.2022.100397.

Bustami, R. A., Beecham, S., & Hopeward, J. The influence of plant type, substrate and irrigation regime on living wall performance in a semi-arid climate. Environments, 10(2), 26. 2023. doi.org/10.3390/environments10020026

Azmat, R., Saleem, A., Ahmed, W., Qayyum, A., El-Serehy, H. A., and Ali, S. The Investigation of the Impact of Toxicity of Metals on Oxygen-Evolving Complex in Spinacia oleracea. Antioxidants, 11(9), 1802. 2022. doi.org/10.3390/antiox11091802.

Sun, S., Feng, Y., Huang, G., Zhao, X., and Song, F. Rhizophagus irregularis enhances tolerance to cadmium stress by altering host plant hemp (Cannabis sativa L.) photosynthetic properties. Environmental Pollution, 314, 120309. 2022. doi.org/10.1016/j.envpol.2022.120309.

Booth, M. W., Breed, M. F., Kendrick, G. A., Bayer, P. E., Severn-Ellis, A. A., and Sinclair, E. A. Tissue-specific transcriptome profiles identify functional differences key to understanding whole plant response to life in variable salinity. Biology Open, 11(8), bio059147. 2022. doi: 10.1242/bio.059147.

Buturi, C. V., Sabatino, L., Mauro, R. P., Navarro-León, E., Blasco, B., Leonardi, C., and Giuffrida, F. Iron biofortification of greenhouse soilless lettuce: An effective agronomic tool to improve the dietary mineral intake. Agronomy, 12(8), 1793. 2022. doi.org/10.3390/agronomy12081793.

Peralta-Sánchez, M. G., Gómez-Merino, F. C., Tejeda-Sartorius, O., and Trejo-Téllez, L. I. Nitrogen Nutrition Differentially Affects Concentrations of Photosynthetic Pigments and Antioxidant Compounds in Mexican Marigold (Tagetes erecta L.). Agriculture, 13(3), 517. 2023. doi.org/10.3390/agriculture13030517.

Stangoulis, J. C., and Knez, M. Biofortification of major crop plants with iron and zinc-achievements and future directions. Plant and Soil, 474(1-2), 57-76. 2022. doi.org/10.1007/s11104-022-05330-7.

Fathy, M., Saad Eldin, S. M., Naseem, M., Dandekar, T., and Othman, E. M. Cytokinins: Wide-spread signaling hormones from plants to humans with high medical potential. Nutrients, 14(7), 1495. 2022. doi.org/10.3390/nu14071495.

Sari, P. N., Auliya, M., Farihah, U., and Nasution, N. E. A. The effect of applying fertilizer of moringa leaf (Moringa oliefera) extract and rice washing water to the growth of pakcoy plant (Brassica rapa L. spp. Chinensis (L.)). In Journal of Physics: Conference Series (Vol. 1563, No. 1, p. 012021). IOP Publishing. (2020, June). DOI 10.1088/1742-6596/1563/1/012021.

Li, C., Zhao, Y., Wang, Y., Li, L., Yang, X., Chen, S., and Zhou, W. Microbial community changes induced by Pediococcus pentosaceus improve the physicochemical properties and safety in fermented tilapia sausage. Food Research International, 147, 110476. 2021. doi.org/10.1016/j.foodres.2021.110476.

Khalid, S., Arshad, M., Mahmood, S., Ahmed, W., Siddique, F., Khalid, W., and Hassan, F. A. Nutritional and phytochemical screening of Moringa oleifera leaf powder in aqueous and ethanol extract. International Journal of Food Properties, 26(1), 2338-2348. 2023. doi.org/10.1080/10942912.2023.2246685.

Mashamaite, C. V., Ngcobo, B. L., Manyevere, A., Bertling, I., and Fawole, O. A. Assessing the usefulness of Moringa oleifera leaf extract as a biostimulant to supplement synthetic fertilizers: A Review. Plants, 11(17), 2214. 2022. doi.org/10.3390/plants11172214.

Karthiga, D., Chozhavendhan, S., Gandhiraj, V., and Aniskumar, M. The effects of Moringa oleifera leaf extract as an organic bio-stimulant for the growth of various plants. Biocatalysis and Agricultural Biotechnology, 102446. 2022. doi.org/10.1016/j.bcab.2022.102446

Hafeez, A., Tipu, M. I., Saleem, M. H., Al-Ashkar, I., Saneoka, H., and El Sabagh, A. Foliar application of moringa leaf extract (MLE) enhanced antioxidant system, growth, and biomass related attributes in safflower plants. South African Journal of Botany, 150, 1087-1095. 2022. doi.org/10.1016/j.sajb.2022.09.021.

Atan, F., Rosliza, R., and Syahidah, W. W. The efficiency of moringa leaf (Moringa Oleifera) as green material carbon steel corrosion inhibitor for different concentration of sea water. In Journal of Physics: Conference Series (Vol. 2266, No. 1, p. 012009). IOP Publishing. (2022, May). DOI 10.1088/1742-6596/2266/1/012009.

Alghanim, F. S., Al-Hadethi, M. M. E. A., and Yaviç, A. Response of Apple Trees Performance to Moringa Extract, Humic Acid, and Liquid Organic Fertilizers (Vit-Org). Journal of Plant Production, 313-317. 2023. DOI: 10.21608/jpp.2023.213580.1244.




DOI: http://dx.doi.org/10.18517/ijaseit.13.6.18501

Refbacks

  • There are currently no refbacks.



Published by INSIGHT - Indonesian Society for Knowledge and Human Development