The Assessment of Soil Quality and Earthworms as Bioindicators in the Alas Bromo Education Forest, Central Java, Indonesia

Widyatmani Sih Dewi, Muhammad Agan Nugroho, Muhammad Arsya Dika Maulana, - Purwanto, Dwi Priyo Ariyanto, Eko Rini Indrayatie

Abstract


Understanding the environmental services provided by healthy forest ecosystems needs accurate soil quality (SQ) assessments. Selecting appropriate SQ indicators is one of the keys to the effectiveness of SQ assessment. Earthworms have the potential to be bioindicators of soil quality because they are sensitive to environmental changes. This study aims to assess the soil quality level and evaluate the potential of earthworms as bioindicators in six land covers at the Alas Bromo Education Forest of Universitas Sebelas Maret, namely: pine, pine-mahogany, mahogany, mixed, annual crops, and pine replanting. SQ assessment is measured by calculating the Soil Quality Index (SQI) using Principal Component Analysis (PCA) with 10 Minimum Data Sets (MDS), namely: bulk density, earthworm abundance, C-organic, N-total, pH, porosity, exchangeable Al, cation exchange capacity (CEC), base saturation (BS), and available K. Statistical analysis using ANOVA, Duncan’s Multiple Range Test, correlation, and regression. The results showed that land cover significantly (p-value < 0.01) affected SQI. The SQI for all land cover categories is poor, with the highest value on mixed land cover (0.36) and the lowest on pine-mahogany (0.31). The land cover also significantly (p-value < 0.01) affected earthworm abundance, with the highest on mixed land cover (365 individuals/m2) and the lowest on pine replanting (25 individuals/m2). Earthworm density as a determining indicator significantly correlated with SQI (r = 0.495) and contributed 24.5% to the SQI. Future research needs to test the effectiveness of earthworms as a bioindicator of soil quality in other land uses in different areas.

Keywords


Land cover; limiting factor; PCA; soil function; SQI

Full Text:

PDF

References


A. A. Darmawan, D. P. Ariyanto, T. M. Basuki, J. Syamsiyah, and W. S. Dewi, “Biomass accumulation and carbon sequestration potential in varying tree species, ages and densities in Gunung Bromo Education Forest, Central Java, Indonesia,†Biodiversitas vol. 23, no. 10, pp. 5093-5100, October 2022. DOI: 10.13057/biodiv/d231016.

R. Pillay, M. Venter, J. Aragon-Osejo, P. González- del-Pliego, A. J. Hansen, J. E. M. Watson, and O. Venter, “Tropical forests are home to over half of the world’s vertebrate speciesâ€, Front. Ecol. Environ. vol. 20, no. 1, pp. 10–15, 2022. doi:10.1002/fee.2420.

B. Mackey, C. F. Kormos, H. Keith, W. R. Moomaw, R. A. Houghton , R. A. Mittermeier, D. Hole, and S. Hugh, “Understanding the importance of primary tropical forest protection as a mitigation strategy,†Mitigation and Adaptation Strategies for Global Change vol. 25, pp. 763–787, 2020. https://doi.org/10.1007/s11027-019-09891-4.

W. S. Dewi, S. D. C. Prasidina, D. D. Amalina, and S. Wongsoatmojo, “The density and diversity of Arbuscular mycorrhizal spores on land covers with different tree canopy densities at the UNS educational forests,†in Proc. IOP Conf. Series: Earth and Environmental Science, Surakarta, Indonesia, 824, 012021, 2021. doi:10.1088/1755-1315/824/1/012021.

D. S. Page-Dumroese, M. D. Busse, M. F. Jurgensen, and E. J. Jokela, “Sustaining forest soil quality and productivity,†in Soils and Landscape Restoration, J. A. Stanturf and M. A. Challaham, Jr., eds., United Kingdom: Academic Press, 2021, pp. 63-94. [Online]. Available: https://doi.org/10.1016/B978-0-12-813193-0.00003-5.

Q. Wu, W. Zheng, C. Rao, E. Wang, and W. Yan, “Soil Quality Assessment and Management in Karst Rocky Desertiï¬cation Ecosystem of Southwest China,†Forests vol. 13, no. 1513, 2022. https://doi.org/10.3390/f13091513.

D. P. Ariyanto, Qudsi, Z. A., Sumani, W. S. Dewi, Rahayu, and Komariah, “The dynamic effect of air temperature and air humidity toward soil temperature in various lands cover at KHDTK Gunung Bromo, Karanganyar – Indonesia,†in Proc. IOP Conf. Series: Earth and Environmental Science, Surakarta, Indonesia, 724, 012003, 2021. doi:10.1088/1755-1315/724/1/012003.

A. T. Adetunji, B. Ncube, R. Mulidzi, and Lewu, F. B., “Management impact and benefit of cover crops on soil quality: A review,†Soil and Tillage Research vol. 204, no. 104717, May 2019. https://doi.org/10.1016/j.still.2020.104717.

S. Daryanto, B. Fua, L. Wang, P-A. Jacinthe, W. Zhao, “Quantitative synthesis on the ecosystem services of cover crops,†Earth-Science Reviews vol. 185, pp. 357-373, 2018. https://doi.org/10.1016/j.earscirev.2018.06.013.

N. Meyer, J-E. Bergez, J. Constantin, and E. Justes, “Cover crops reduce water drainage in temperate climates: A meta-analysis,†Agron. Sustain. Dev. vol. 39, no. 3, 2019. https://doi.org/10.1007/s13593-018-0546-y.

P. Sharma, A. Singh, C. S. Kahlon, A. S. Brar, K. K. Grover, M. Dia, and R. L. Steiner, “The Role of Cover Crops towards Sustainable Soil Health and Agriculture—A Review Paperâ€. American Journal of Plant Sciences vol. 09, no. 09, pp. 1935–1951, 2018. https://doi.org/10.4236/ajps.2018.99140.

M. A. Wubie and M. Assen, “Effects of land cover changes and slope gradient on soil quality in the Gumara watershed, Lake Tana basin of North–West Ethiopia,†Modeling Earth Systems and Environment vol. 6, pp. 85–97, 2020. https://doi.org/10.1007/s40808-019-00660-5.

S. Alam, S. Ginting, M. T. Hemon, S. Leomo, L. M. H. Kilowasid, J. Karim, Y. Nugroho, J. Matatula, and P. Y. A. P. Wirabuana, “Influence of land cover types on soil quality and carbon storage in Moramo Education Estate, Southeast Sulawesi, Indonesia,†Biodiversitas vol. 23, no. 9, pp. 4371-4376, September 2022. DOI: 10.13057/biodiv/d230901.

D. S. Page-Dumroese, F. G. Sanchez, R. P. Udawatta, C. H. Perry, and G. González, “Soil Health Assessent of Forest Soils†in Soil Health Series, vol. 1, Approaches to Soil Health Analysis, 1st Ed., D. L. Karlen, D. E. Stott, and M. M. Mikha, eds., Soil Science Society of America: John Wiley & Sons, 2021, pp. 100-138.

M. C. Amacher, K. P. O’Neill, and C. H. Perry, “Soil Vital Signs: A New Soil Quality Index (SQI) for Assessing Forest Soil Health,†Res. Pap. RMRS-RP-65WWW. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, pp. 12, May 2007.

S. Mammo, Z. Kebin, A. Chimidi, and H. Ibrahim, “Soil Quality Analysis for Sustainability of Forest Ecosystem: The Case of Chilimo-Gaji Forest, West Shewa Zone, Ethiopia,†Journal of Environment and Earth Science vol. 9, no. 3, 2019. DOI: 10.7176/JEES.

M. E. Ngaiwi, E. and Molua, A. E. Egbe, “Forest Soil Quality and Potentials for Food Systems Health in the Takamanda National Park in South Western Cameroon,†Natural Resources, vol. 10, pp. 218-229, 2019. https://doi.org/10.4236/nr.2019.106015.

I. Chahal and L. L.Van Eerd, “Quantifying soil quality in a horticultural-cover cropping system,†Geoderma, vol. 352, pp. 38–48, May 2019. https://doi.org/10.1016/j.geoderma.2019.05.039.

K. Juhos, S. Czigány, B. Madarász, and M. Ladányi, “Interpretation of soil quality indicators for land suitability assessment – A multivariate approach for Central European arable soils,†Ecological Indicators, vol. 99, pp. 261–272, 2019. https://doi.org/10.1016/j.ecolind.2018.11.063.

C.A. Seybold, M.J. Mausbach, D.L. Karlen, and H.H. Rogers, “Quantification of soil quality†in Soil Processes and the Carbon Cycle, R. Lal, J. M. Kimble, R. F. Follett, and B. A. Stewart, eds., London: CRC Press, pp. 387–404, 1997.

M. S. Askari and N. M. Holden, “Quantitative soil quality indexing of temperate arable management systems,†Soil & Tillage Research, vol. 150, pp. 57–67, 2015. http://dx.doi.org/10.1016/j.still.2015.01.010.

E. K. Bünemann, G. Bongiorno, Z. Bai, R. E. Creamer, G. D. Deyn, R. de Goede, L. Fleskens, V. Geissen, T. W. Kuyper, P. Mäder, M. Pulleman, W. Sukkel, J. W. van Groenigen, and L. Brussaard, “Soil quality – A critical review,†Soil Biology and Biochemistry, vol. 120, pp. 105–125, 2018. https://doi.org/10.1016/j.soilbio.2018.01.030.

P. Lavelle, E. Duran, L. Rousseau, C. Sanabria, and J. Vasquez, “Soil Macroinvertebrate Communities as Indicators of Ecosystem Services in American Tropical Environments,†Biodiversity Online J., vol. 1, no. 4, BOJ.000516, 2021.

H. Sohrabi, M, Jourgholami, M. Jafari, F. Tavankar, R. Venanzi, and R. Picchio, “Earthworms as an ecological indicator of soil recovery after mechanized logging operations in mixed beech forestsâ€, Forests, vol. 12, no. 1, pp. 1–18, 2021. https://doi.org/10.3390/f12010018.

E. Velasquez and P. Lavelle, “Soil macrofauna as an indicator for evaluating soil based ecosystem services in agricultural landscapes,†Acta Oecologica, vol. 100, no. 103446, July 2019. https://doi.org/10.1016/j.actao.2019.103446.

J. Barthod, M. F. Digna,G. Le Mer, N. Bottinelli, F. Watteau, I. Kögel-Knabner, and C. Rumpel, “How do earthworms affect organic matter decomposition in the presence of clay-sized minerals?,†Soil Biology and Biochemistry, vol, 143, no. 107730, April 2020. https://doi.org/10.1016/j.soilbio.2020.107730.

Y. Guo, R. Fan, N. McLaughlin, Y. Zhang, X. Chen, D. Wu, X. Zhang, and A. Liang, “Impacts induced by the combination of earthworms, residue and tillage on soil organic carbon dynamics using 13C labelling technique and X-ray computed tomography,†Soil and Tillage Research, vol. 205, no. 104737, January 2021. https://doi.org/10.1016/j.still.2020.104737.

Z. Guo, J. Han, and J. Li, J., “Response of organic carbon mineralization and bacterial communities to soft rock additions in sandy soils,†PeerJ, vol. 8, no. e8948, 2020. https://doi.org/10.7717/peerj.8948.

S. Al-Maliki, D. K. A. Al-Taey, and H. Z. Al-Mammori, H. Z., “Earthworms and eco-consequences: Considerations to soil biological indicators and plant function: A review,†Acta Ecologica Sinica, vol. 41, no. 6, pp. 512–523, December 2021. https://doi.org/10.1016/j.chnaes.2021.02.003.

A. K Singh, X. J. Jiang, B. Yang, J. Wu, A. Rai, C. Chen, J. Ahirwal, P. Wang, W. Liu, and N. Singh, “Biological indicators affected by land use change, soil resource availability and seasonality in dry tropics,†Ecological Indicators, vol. 115, no. 106369, August 2020. https://doi.org/10.1016/j.ecolind.2020.106369.

G. Pérès, F. Vandenbulcke, M. Guernion, M. Hedde, T. Beguiristain, F. Douay, S. Houot, D. Piron, A. Richard, A. Bispo, C. Grand, L. Galsomies, and D. Cluzeau, “ Earthworm indicators as tools for soil monitoring, characterization and risk assessment. An example from the national Bioindicator programme (France),†Pedobiologia, vol. 54 (SUPPL.), pp. S77–S87, December 2011. https://doi.org/10.1016/j.pedobi.2011.09.015.

S. Fusaro, F. Gavinelli, F, Lazzarini, F., and M. G. Paoletti, “Soil Biological Quality Index based on earthworms (QBS-e). A new way to use earthworms as bioindicators in agroecosystems,†Ecological Indicators, vol. 93, pp. 1276–1292, October 2018. https://doi.org/10.1016/j.ecolind.2018.06.007.

E. Velasquez, and L. Lavelle, P., “Soil macrofauna as an indicator for evaluating soil based ecosystem services in agricultural landscapes,†Acta Oecologica, vol. 100, no. 103446, October 2019. https://doi.org/10.1016/j.actao.2019.103446.

"Sifat Fisik Tanah dan Metode Analisisnya," [Soil Physical Properties and Analysis Methods] U. Kurnia, F. Agus, A. Adimihardja, and A. Dariah, A., eds., Bogor, Indonesia: Balai Besar Litbang Sumber Daya Pertanian, 2006.

R. W. Nusantara, A. Aspan, A. M. Alhaddad, U. E. Suryadi, M. Makhrawie, I. Fitria, J. Fakhrudin, and R. Rezekikasari, "Peat soil quality index and its determinants as influenced by land use changes in Kubu Raya district, West Kalimantan, Indonesia," Biodiversitas, vol. 19, no. 2, pp. 540–545, 2018. https://doi.org/10.13057/biodiv/d190229.

S. Chandel, M. S. Hadda, and A. K. Mahal, "Soil Quality Assessment Through Minimum Data Set Under Different Land Uses of Submontane Punjab," Communications in Soil Science and Plant Analysis, vol. 49, no. 6, pp. 658–674, 2018. https://doi.org/10.1080/00103624.2018.1425424.

K. Bargali, V. Manral, K. Padalia, S. S. Bargali, and V. P. Upadhyay, "Effect of vegetation type and season on microbial biomass carbon in Central Himalayan forest soils, India," Catena, vol. 171, pp. 125–135. December 2018. https://doi.org/10.1016/j.catena.2018.07.001.

Q. W. Wang, M. Pieristè, C. Liu, T. Kenta, T. M. Robson, and H. Kurokawa, "The contribution of photodegradation to litter decomposition in a temperate forest gap and understorey," New Phytologist, vol. 229, no.5, March 2021. https://doi.org/10.1111/nph.17022.

S. Hoeber, P. Fransson, M. Weih, and S. Manzoni, "Leaf litter quality coupled to Salix variety drives litter decomposition more than stand diversity or climate," Plant and Soil, vol. 453, pp. 313–328, June 2020. https://doi.org/10.1007/s11104-020-04606-0.

J. M. Barel, T. W. Kuyper, J. Paul, W. de Boer, J. H. C. Cornelissen, and G. B. De Deyn, "Winter cover crop legacy effects on litter decomposition act through litter quality and microbial community changes," Journal of Applied Ecology, vol. 56, pp. 132–143, June 2018. https://doi.org/10.1111/1365-2664.13261.

Y Li, T. M. Bezemer, J. Yang, X. Lü, X. Li, W. Liang, X. Han, and Q. Li, "Changes in litter quality induced by N deposition alter soil microbial communities," Soil Biology and Biochemistry, vol. 130, pp. 33–42, March 2019, https://doi.org/10.1016/j.soilbio.2018.11.025.

M. Macek, M. Kopecký, M., and J Wild, "Maximum air temperature controlled by landscape topography affects plant species composition in temperate forests," Landscape Ecology, vol. 34, pp. 2541–2556, September 2019. https://doi.org/10.1007/s10980-019-00903-x.

J. F. Penner and D. A. Frank, "Litter Decomposition in Yellowstone Grasslands: The Roles of Large Herbivores, Litter Quality, and Climate," Ecosystems, vol. 22, no. 4, pp. 929–937, 2019. https://doi.org/10.1007/s10021-018-0310-9.

G. Lawson, C. Dupraz, and J. Watté, "Can silvoarable systems maintain yield, resilience, and diversity in the face of changing environments?" in Agroecosystem Diversity, Reconciling Contemporary Agriculture and Environmental Quality, G. Lemaire, P. C. D. F. Carvalho, S. Kronberg, S. Recous, eds., France: Academic Press, pp. 145–168. https://doi.org/10.1016/B978-0-12-811050-8.00009-1.

J. Kermavnar, M. Ferlan, A. Marinšek, K. Eler, A. Kobler, and L. Kutnar, "Effects of various cutting treatments and topographic factors on microclimatic conditions in Dinaric fir-beech forests," Agricultural and Forest Meteorology, vol. 295, no. 108186, December 2020. https://doi.org/10.1016/j.agrformet.2020.108186.

H. R. El-Ramedy, T. A. Alshaal, M. Amer, E. Domokos-Szabolcsy, N. Elhawat, J. Prokisch, and M. Fari, "Soil Quality and Plant Nutrition," in Sustainable Agriculture Reviews 14, Agroecology and Global Change, H. Ozier-Lafontaine and M. Lesueur-Jannoyer, eds., Springer, Cham., pp. 345-447, 2014. https://doi.org/10.1007/978-3-319-06016-3_11.

M. Zaffar and S. G. Lu, "Pore size distribution of clayey soils and its correlation with soil organic matter," Pedosphere, vol. 25, no. 2, pp. 240–249, April 2015. https://doi.org/10.1016/S1002-0160(15)60009-1.

B. Minasny and A. B. McBratney, "Rejoinder to the comment on: B. Minasny & A.B. McBratney. 2018. Limited effect of organic matter on soil available water capacity," European Journal of Soil Science, vol. 69, no. 1, pp. 155–157, January 2018. https://doi.org/10.1111/ejss.12526.

J. Fukumasu, N. Jarvis, J. Koestel, T. Kätterer, and M. Larsbo, "Relations between soil organic carbon content and the pore size distribution for an arable topsoil with large variations in soil properties," European Journal of Soil Science, vol. 73, no. 1, pp. 1–15, January 2022. https://doi.org/10.1111/ejss.13212.

W. Kong, Y. Yao, Z. Zhao, X. Qin, H. Zhu, X. Wei, M. Shao, Z. Wang, K. Bao, and M. Su, "Effects of vegetation and slope aspect on soil nitrogen mineralization during the growing season in sloping lands of the Loess Plateau," Catena, vol. 172, pp. 753–763, January 2019. https://doi.org/10.1016/j.catena.2018.09.037.

A. Rawal, S. Chakraborty, B. Li, K. Lewis, M. Godoy, L. Paulette, and D. C. Weindorf, "Determination of base saturation percentage in agricultural soils via portable X-ray fluorescence spectrometer," Geoderma, vol. 338, pp. 375–382, March 2019. https://doi.org/10.1016/j.geoderma.2018.12.032.

Z. Zgorelec, B. Grahovac, A. Percin, V. Jurkovic, L. Gandjaeva, and N. Maurović, "Comparison of two different CEC determination methods regarding the soil properties," Agric. conspec. sci., vol. 84, no. 2, 151–158, 2019.

C. J. Penn and J. J. Camberato, "A critical review on soil chemical processes that control how soil ph affects phosphorus availability to plants," Agriculture, vol. 9, no. 120, pp. 1–18, 2019. https://doi.org/10.3390/agriculture9060120.

Y. Fan, X. Zhong, F. Lin, C. Liu, L. Yang, M. Wang, G. Chen, Y. Chen, and Y. Yang, "Responses of soil phosphorus fractions after nitrogen addition in a subtropical forest ecosystem: Insights from decreased Fe and Al oxides and increased plant roots," Geoderma, vol. 337, pp. 246–255, March 2019. https://doi.org/10.1016/j.geoderma.2018.09.028.

X. Q. Zhao and R. F. Shen, "Aluminum–nitrogen interactions in the soil–plant system," Frontiers in Plant Science, vol. 9, article 807, pp. 1–15, June 2018. https://doi.org/10.3389/fpls.2018.00807.

H. Y. Ch’Ng, H. O. Ahmed, and N. M. A. Majid, "Improving phosphorus availability in an acid soil using organic amendments produced from agroindustrial wastes," The Scientific World Journal, Article ID 506356, pp. 6, 2014. https://doi.org/10.1155/2014/506356.

K. S. Niranjana, K. Yogendra, and K. M. Mahadevan, "Soil Quality Assessment Through Minimum Data Set Under Arecanut Land Use System Hilly Zone of Karnataka, India," International Journal of Environment, Ecology, Family and Urban Studies, vol. 9, no. 1, pp. 27–34, February 2019. https://doi.org/10.24247/ijeefusfeb20194.

M. P. Cantú, ,A. R. Becker, J. C. Bedano, H. F. Schiavo, and B. J. Parra, "Evaluación del impacto del cambio de uso y manejo de la tierra mediante indicadores de calidad de suelo, Córdoba, Argentina," Cadernos Do Laboratorio Xeoloxico de Laxe, vol. 34, pp. 203–214, 2009.

F. Umasugi, W. Nurmawan, dan F. Saroisong, "Produksi Serasah Pohon Spathodea campanulata," Cocos. vol. 8, no. 8. 2021. https://doi.org/10.35791/cocos.v8i8.38281.

G. Tian, B. Kang, and L. Brussaard, "Biological effects of plant residues with contrasting chemical compositions on Plant and Soil under humid tropical conditions," Soil Biology & Biochemistry, vol. 24, no. 10, pp. 1051-1060, October 1992. https://doi.org/10.1016/0038-0717(92)90035-V.

B. P. Simatupang, A. Niswati, and S. Yusnaini, "Populasi Dan Keanekaragaman Cacing Tanah Pada Berbagai Lokasi Di Hutan Taman Nasional Bukit Barisan Selatan (TNBBS)," [Population and Diversity of Earthworms at Various Locations in the Bukit Barisan Selatan National Park Forest] Jurnal Agrotek Tropika, vol. 3, no. 3, pp. 402–408, September 2015. https://doi.org/10.23960/jat.v3i3.1971.

J. Hallam, J. Holden, D. A. Robinson, and M. E. Hodson, "Effects of winter wheat and endogeic earthworms on soil physical and hydraulic properties," Geoderma, vol. 400, no. 115126, October 2021. https://doi.org/10.1016/j.geoderma.2021.115126.

N. Ahmed, and K. A. Al-Mutairi, "Earthworms Effect on Microbial Population and Soil Fertility as Well as Their Interaction with Agriculture Practices," Sustainability, vol. 14, no. 7803, pp. 1–17, 2022. https://doi.org/10.3390/su14137803.

J. V. C. de L. da Silva, M. N. C. Hirschfeld, J. E. Cares, and A. M. Esteves, "Land use, soil properties and climate variables influence the nematode communities in the Caatinga dry forest," Applied Soil Ecology, vol. 150, no. 103474, June 2020. https://doi.org/10.1016/j.apsoil.2019.103474.

M. T. Prendergast-Miller, D. T. Jones, D. T., D. Berdeni, S. Bird, P. J. Chapman, L. Firbank, R. Grayson, T. Helgason, J. Holden, M. Lappage, J. Leake, and M, E. Hodson, "Arable fields as potential reservoirs of biodiversity: Earthworm populations increase in new leys," Science of the Total Environment, vol. 789, no. 147880, October 2021. https://doi.org/10.1016/j.scitotenv.2021.147880.

A. S. Sankar, and A. Patnaik, "Impact of soil physico-chemical properties on distribution of earthworm populations across different land use patterns in southern India," The Journal of Basic and Applied Zoology, vol. 79, no. 1, November 2018. https://doi.org/10.1186/s41936-018-0066-y.

C. Walsh, J. L. Johnson-Maynard, and I. N. Leslie, "Seasonal variations in exotic earthworm populations in wheat fields of the Inland Pacific Northwest, U.S.A," Pedobiologia, vol. 76, no. 150569, September 2019. https://doi.org/10.1016/j.pedobi.2019.150569.

S. Cai, J. Wang, W. Lv, S. Xu, and H. Zhu, "Nitrogen fertilization alters the effects of earthworms on soil physicochemical properties and bacterial community structure," Applied Soil Ecology, vol. 150, no. 103478, 2020. https://doi.org/10.1016/j.apsoil.2019.103478.

N. L. Kartini,"Pengaruh Cacing Tanah Dan Jenis Media Terhadap Kualitas Pupuk Organik,"[The Effect of Earthworms and Media Types on the Quality of Organic Fertilizers] Pastura, vol. 8, no. 1, 2018. https://doi.org/10.24843/pastura.2018.v08.i01.p11.

F. A. Sembiring, S. Yusnaini, H. Buchari, and A. Niswati, "Pengaruh Sistem Olah Tanah Terhadap Populasi Dan Biomassa Cacing Tanah Pada Lahan Bekas Alang-Alang (Imperata cylindrica L.) Yang Ditanami Kedelai (Glycine max L.) Musim Kedua,"[Effect of Tillage System on Earthworm Population and Biomass in Former Imperata (Imperata cylindrica L.) Planted with Soybean (Glycine max L.) Second Season] Jurnal Agrotek Tropika, vol. 2, no. 3, pp. 475–481, September 2014. https://doi.org/10.23960/jat.v2i3.2082.

N. H. Ayuningtias, M. Arifin, and M. Damayani, "Analisa Kualitas Tanah Pada Berbagai Penggunaan Lahan di Sub Sub DAS Cimanuk Hulu," SoilREns, vol. 14, no. 2, pp. 25–32, 2016. https://doi.org/10.24198/soilrens.v14i2.11035.

S. Rahmah, Yusran, and H. Umar, "Sifat Kimia Tanah Pada Berbagai Tipe Penggunaan Lahan Di Desa Bobo Kecamatan Palolo Kabupaten Sigi,"[Soil Chemical Properties in Various Types of Land Use in Bobo Village, Palolo District, Sigi Regency] Warta Rimba, vol. 2, no. 1, pp. 88-95, Juni 2014.

S. S.Videira, M de C. P. e Silva, P. de S. Galisa, A. C. F. Dias, R. Nissinen, L. C. B. Divan, J. D. van Elsas, J. I. Baldani, and J. F. Salles, "Culture-independent molecular approaches reveal a mostly unknown high diversity of active nitrogen-fixing bacteria associated with Pennisetum purpureum - a bioenergy crop," Plant and Soil, vol. 373, pp. 737–754, July 2013. https://doi.org/10.1007/s11104-013-1828-4.

M. Ehret, R. Graß, and M. Wachendorf, "Productivity at the tree-crop interface of a young willow-grassland alley cropping system," Agroforestry Systems, vol. 92, no. 1, pp. 71–83, 2018. https://doi.org/10.1007/s10457-016-0015-z.

L. F. Rivera, I. Armbrecht, and Z. Calle, "Silvopastoral systems and ant diversity conservation in a cattle-dominated landscape of the Colombian Andes," Agriculture, Ecosystems and Environment, vol. 181, pp. 188–194, December 2013. https://doi.org/10.1016/j.agee.2013.09.011.

F. Raiesi and A. Beheshti, “Evaluating forest soil quality after deforestation and loss of ecosystem services using network analysis and factor analysis techniques,†Catena, vol. 208, no. 105778, 2022. https://doi.org/10.1016/j.catena.2021.105778.

G. A. Ghani , M. Dimyati , A. Damayanti, “Prediction of Land Cover and Land Surface Temperature in Kuta Selatan Sub-district, Bali Province,†IJASEIT, vol. 11 no. 1, 2021




DOI: http://dx.doi.org/10.18517/ijaseit.13.2.18398

Refbacks

  • There are currently no refbacks.



Published by INSIGHT - Indonesian Society for Knowledge and Human Development