Characteristic of Mocaf Noodles with Sago Flour Substitution (Metroxylon sago) and Addition of Latoh (Caulerpa lentillifera)

Sri Budi Wahjuningsih, - Haslina, Novizar Nazir, Mita Nurul Azkia, Agus Triputranto

Abstract


Food can fulfill both functional needs that are beneficial for health and nutritional requirements. Using mocaf (modified cassava flour) has been studied to produce food-processed products with good sensory characteristics, such as dry noodles. Latoh, which is rich in phenolic content and antioxidant activity, can further enhance the functional properties of noodles in addition to serving as a binder. Additionally, the addition of sago starch can improve the texture of the noodles and serve as a source of dietary fiber. This study aimed to study the nutritional value and functional properties of mocaf noodles by adding sago starch and latoh. There were six formula with varying percentages of mocaf flour, including sago with a ratio of 60%:10% (M1), 50%:20% (M2), 40%:30% (M3), 30%:40% (M4), 20%:40% (M5), and 10%:60% (M6), each formula containing 2% latoh flour. The result showed that mocaf noodle contained ash content about 1.32-1,32%, protein content 3.9-4.37%, fat content 0.41-0.67%, carbohydrate content 82.39-83.43% and total calories 339-343 kcal/100g noodles. Formula M3 had higher antioxidant activity (6.6%) and total dietary fiber content (11,54%) compared to other samples. The resistant starch content of noodles ranged from 8.7-12.64% with starch digestibility ranging from 27.27-61.05%. In conclusion, incorporating 30% sago starch, 40% mocaf, and 2% latoh flour in a formula has been found to increase dietary fiber and decrease starch digestibility. This suggests that the formula has the potential to be developed as a functional food.

Keywords


Noodle; mocaf; sago; Latoh; substitution

Full Text:

PDF

References


WINA, “Instant Noodles Demand Rangkings, Estimated by World Instant Noodles Association (WINA).,†2022. [Online]. Available: https://instantnoodles.org/en/noodles/demand/table

BPS, “Impor Biji Gandum dan Meslin Menurut Negara Asal Utama, 2017-2021, Badan Pusat Statistik.,†2022. https://www.bps.go.id/statictable/2019/02/14/2016/ [In Bahasa Indonesia]

A. N. Al-Baarri et al., “The Visible Characteristic of Modified Cassava Flour-Noodle after Treatment with Mineral Salt,†IOP Conf. Ser. Earth Environ. Sci., vol. 1024, no. 1, p. 012048, 2022, doi: 10.1088/1755-1315/1024/1/012048.

M. G. R. Pandin, C. S. Waloejo, D. Sunyowati, and I. Rizkyah, “The Potential of Mocaf (Modified Cassava Flour) as Disaster Emergency Food,†IOP Conf. Ser. Earth Environ. Sci., vol. 995, no. 1, 2022, doi: 10.1088/1755-1315/995/1/012006.

S. B. Wahjuningsih, Sudjatinah, M. N. Azkia, and D. Anggraeni, “The study of sorghum (Sorghum bicolor l.), mung bean (vigna radiata) and sago (metroxylon sagu) noodles: Formulation and physical characterization,†Curr. Res. Nutr. Food Sci., vol. 8, no. 1, pp. 217–225, 2020, doi: 10.12944/CRNFSJ.8.1.20.

S. B. Wahjuningsih, Y. Marsono, D. Praseptiangga, B. Haryanto, and M. N. Azkia, “Organoleptic, chemical, and physical characteristics of sago (Metroxylon spp.) analog rice supplemented with red bean (Phaseolus vulgaris) flour as a functional food,†Int. J. Adv. Sci. Eng. Inf. Technol., vol. 10, no. 3, pp. 1289–1296, 2020, doi: 10.18517/ijaseit.10.3.11098.

P. Ghalambor, G. Asadi, A. Mohammadi Nafchi, and S. M. Seyedin Ardebili, “Investigation of dual modification on physicochemical, morphological, thermal, pasting, and retrogradation characteristics of sago starch,†Food Sci. Nutr., no. January, pp. 2285–2299, 2022, doi: 10.1002/fsn3.2837.

S. A. Zaman, H. Kamilah, A. Z. R. A. Seruji, K. F. Pa’ee, and S. R. Sarbini, “Physicochemical properties and the functional food potential of resistant sago (Metroxylon sagu) starch type IV produced by phosphorylation/acetylation treatment,†J. Food Meas. Charact., vol. 16, no. 2, pp. 1702–1709, 2022, doi: 10.1007/s11694-021-01263-4.

L. Elisabeth, R. Achuthan, M. Pribbernow, H. Trung, K. Springer, and A. Kunzmann, “Improving the nutritional value of edible Caulerpa lentillifera ( Chlorophyta ) using high light intensities . A realistic tool for sea grape farmers,†Algal Res., vol. 66, no. June, p. 102785, 2022, doi: 10.1016/j.algal.2022.102785.

W. H. Zuldin, R. Shapawi, and S. R. M. Shaleh, “Biochemical composition of enigmatic green macroalgae, Caulerpa macrodisca Decaisne (Bryopsidales, Chlorophyta),†J. Appl. Phycol., vol. 34, no. 1, pp. 589–596, 2022, doi: 10.1007/s10811-021-02639-1.

W. F. Yap, V. Tay, S. H. Tan, Y. Y. Yow, and J. Chew, “Decoding antioxidant and antibacterial potentials of Malaysian green seaweeds: Caulerpa racemosa and caulerpa lentillifera,†Antibiotics, vol. 8, no. 3, 2019, doi: 10.3390/antibiotics8030152.

C. K. Chin, N. Huda, and T. A. Yang, “Incorporation of surimi powder in wet yellow noodles and its effects on the physicochemical and sensory properties,†Int. Food Res. J., vol. 19, no. 2, pp. 701–707, 2012.

A. Bojarczuk, S. Skąpska, A. Mousavi Khaneghah, and K. Marszałek, “Health benefits of resistant starch: A review of the literature,†J. Funct. Foods, vol. 93, no. April, 2022, doi: 10.1016/j.jff.2022.105094.

S. Hrelia and C. Angeloni, “New mechanisms of action of natural antioxidants in health and disease II,†Antioxidants, vol. 10, no. 8, pp. 1–5, 2021, doi: 10.3390/antiox10081200.

AOAC, “Analysis of the Association of Official Analytical Chemists : Official Methods of Analysis of The Association of Official Analytical Chemists (Edisi ke-16).,†Washington, D.C., 1995.

B. V. McCleary, N. Sloane, A. Draga, and I. Lazewska, “Measurement of total dietary fiber using AOAC method 2009.01 (AACC International Approved Method 32-45.01): Evaluation and updates,†Cereal Chem., vol. 90, no. 4, pp. 396–414, 2013, doi: 10.1094/CCHEM-10-12-0135-FI.

M. K. Roy, L. R. Juneja, S. Isobe, and T. Tsushida, “Steam processed broccoli (Brassica oleracea) has higher antioxidant activity in chemical and cellular assay systems,†Food Chem., vol. 114, no. 1, pp. 263–269, 2009, doi: 10.1016/j.foodchem.2008.09.050.

A. K. Anderson, H. S. Guraya, C. James, and L. Salvaggio, “Digestibility and Pasting Properties of Rice Starch Heat-Moisture Treated at the Melting Temperature (Tm),†Starch - Stärke, vol. 54, no. 9, pp. 401–409, 2002, doi: doi:10.1002/1521-379x(200209)54:9<401::aid-star401>3.0.co;2-z.

S. Miura, N. Koyama, N. Crofts, Y. Hosaka, M. Abe, and N. Fujita, “Generation and Starch Characterization of Non-Transgenic BEI and BEIIb Double Mutant Rice (Oryza sativa) with Ultra-High Level of Resistant Starch,†Rice, vol. 14, no. 1, 2021, doi: 10.1186/s12284-020-00441-0.

S. Mudgal and N. Singh, “Diversity in phenolics, amino acids, rheology and noodles glycemic response of brown rice from non-basmati and basmati rice,†Food Res. Int., vol. 158, no. December 2021, p. 111500, 2022, doi: 10.1016/j.foodres.2022.111500.

C. Zhou, Y. Sun, Y. Yao, H. Li, and J. He, “Study of Noodle Quality Based on Protein Properties of Three Wheat Varieties,†J. Food Qual., vol. 2022, pp. 1–13, 2022.

S. Turksoy, M. Y. Erturk, J. Bonilla, H. Turasan, and J. L. Kokini, “Effect of aging at different temperatures on LAOS properties and secondary protein structure of hard wheat flour dough,†J. Cereal Sci., vol. 92, no. November 2019, p. 102926, 2020, doi: 10.1016/j.jcs.2020.102926.

H. Bayomy and E. Alamri, “Technological and nutritional properties of instant noodles enriched with chickpea or lentil flour,†J. King Saud Univ. - Sci., vol. 34, no. 3, p. 101833, 2022, doi: 10.1016/j.jksus.2022.101833.

S. B. Wahjuningsih and S. Susanti, “Chemical, physical, and sensory characteristics of analog rice developed from the mocaf, arrowroof, and red bean flour,†IOP Conf. Ser. Earth Environ. Sci., vol. 102, no. 1, 2018, doi: 10.1088/1755-1315/102/1/012015.

A. Rehman et al., “Pectin polymers as wall materials for the nano-encapsulation of bioactive compounds,†Trends Food Sci. Technol., vol. 90, no. March, pp. 35–46, 2019, doi: 10.1016/j.tifs.2019.05.015.

Q. Zhang et al., “Relationship of phenolic composition of selected purple maize (Zea mays L.) genotypes with their anti-inflammatory, anti-adipogenic and anti-diabetic potential,†Food Chem., vol. 289, no. March, pp. 739–750, 2019, doi: 10.1016/j.foodchem.2019.03.116.

L. Santos-Zea, J. Villela-Castrejón, and J. A. Gutiérrez-Uribe, “Bound Phenolics in Foods,†in Bioactive Molecules in Food, Springer, Cham, 2018, pp. 1–18. doi: 10.1007/978-3-319-78030-6_13.

A. Zeb, “Concept, mechanism, and applications of phenolic antioxidants in foods,†J. Food Biochem., vol. 44, no. 9, pp. 1–22, 2020, doi: 10.1111/jfbc.13394.

M. N. Azkia, S. B. Wahjuningsih, and C. H. Wibowo, “The nutritional and functional properties of noodles prepared from sorghum, mung bean and sago flours,†Food Res., vol. 5, no. S2, pp. 65–69, 2021, doi: 10.26656/fr.2017.5(s2).002.

I. S. Waddell and C. Orfila, “Dietary fiber in the prevention of obesity and obesity-related chronic diseases: From epidemiological evidence to potential molecular mechanisms,†Crit. Rev. Food Sci. Nutr., vol. 0, no. 0, pp. 1–16, 2022, doi: 10.1080/10408398.2022.2061909.

T. M. Barber, S. Kabisch, A. F. H. Pfei, and M. O. Weickert, “Nutrients-12-03209.Pdf,†Nutrients, vol. 12, no. 3209, pp. 1–17, 2020.

G. A. Soliman, “Dietary Fiber, Atherosclerosis, and Cardiovascular Disease,†Nutrients, vol. 11, no. 1155, pp. 1–11, 2019, doi: 10.2741/3700.

T. J. Ashaolu, J. O. Ashaolu, and S. A. O. Adeyeye, “Fermentation of prebiotics by human colonic microbiota in vitro and short-chain fatty acids production: a critical review,†J. Appl. Microbiol., vol. 130, no. 3, pp. 677–687, 2021, doi: 10.1111/jam.14843.

Y. P. Silva, A. Bernardi, and R. L. Frozza, “The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication,†Front. Endocrinol. (Lausanne)., vol. 11, no. January, pp. 1–14, 2020, doi: 10.3389/fendo.2020.00025.




DOI: http://dx.doi.org/10.18517/ijaseit.13.2.18205

Refbacks

  • There are currently no refbacks.



Published by INSIGHT - Indonesian Society for Knowledge and Human Development