The Effect of pH on Contamination Reduction and Metabolite Contents in Mass Cultures of Spirulina (Arthrospira platensis Gomont)

Anita Mufidatun, Mochamad D. Koerniawan, Ulfah J. Siregar, Lucia T. Suwanti, Arief Budiman, Eko Agus Suyono

Abstract


The microalgae Spirulina (Arthrospira platensis Gomont) is already cultured commercially using open ponds. The obstacle to mass cultivation of Spirulina is maintaining the monoculture without any contamination that can affect biomass products and their metabolites. The tolerance of Spirulina to environmental changes, such as changes in pH conditions, can be used as a method to overcome contamination in Spirulina mass cultivation. The growth contaminant can be avoided or controlled by giving mechanical stress by modifying the pH to alkaline levels. The efficient use of cost-effective materials in mass cultivation prevents contamination and maintains Spirulina's productivity. This study investigated the optimal pH parameters of 7–11 for 10 days. Cell density and dry biomass were measured daily using a hemocytometer and filter paper Whatman. The growth rate of contaminant microorganisms was carried out every five days along ten days of cultivation using the Total Plate Count (TPC) method. Using pH 9 effectively increased the cell density significantly (9.12±1.02%) and dry biomass (17.31±4.19 g.mL−1), reducing the contaminants in Spirulina mass cultures. The metabolite content was measured, including total protein using the Kjeldahl method, total lipid using the Soxhlet method, and pigmentations (such as chlorophyll, carotene, and phycocyanin) using spectrophotometry. The pH scale 8–10 can increase protein, lipid, and pigmentations. However, the pH 11 decreased almost entirely as a result of the metabolite contents of Spirulina.

Keywords


Contamination; mass cultivation; Arthrospira platensis Gomont; pH.

Full Text:

PDF

References


J. Masojídek, K. Ranglová, G. E. Lakatos, A. M. S. Benavides, and G. Torzillo, “Variables governing photosynthesis and growth in microalgae mass cultures,†Processes, vol. 9, no. 5, 2021, doi: 10.3390/pr9050820.

A. Vadlamani, B. Pendyala, S. Viamajala, and S. Varanasi, “High Productivity Cultivation of Microalgae without Concentrated CO2 Input,†ACS Sustain. Chem. Eng., vol. 7, no. 2, pp. 1933–1943, 2019, doi: 10.1021/acssuschemeng.8b04094.

F. Di Caprio, “Methods to quantify biological contaminants in microalgae cultures,†Algal Res., vol. 49, no. December 2019, p. 101943, 2020, doi: 10.1016/j.algal.2020.101943.

D. Molina, J. C. de Carvalho, A. I. M. Júnior, C. Faulds, E. Bertrand, and C. R. Soccol, “Biological contamination and its chemical control in microalgal mass cultures,†Appl. Microbiol. Biotechnol., vol. 103, no. 23–24, pp. 9345–9358, 2019, doi: 10.1007/s00253-019-10193-7.

T. Lafarga, A. Sánchez-Zurano, S. Villaró, A. Morillas-España, and G. Acién, “Industrial production of spirulina as a protein source for bioactive peptide generation,†Trends Food Sci. Technol., vol. 116, no. June, pp. 176–185, 2021, doi: 10.1016/j.tifs.2021.07.018.

K. P. Papadopoulos et al., “Cultivation of Arthrospira platensis in Brewery Wastewater,†Water (Switzerland), vol. 14, no. 10, 2022, doi: 10.3390/w14101547.

J. A. Raven, C. S. Cockell, and C. L. De La Rocha, “The evolution of inorganic carbon concentrating mechanisms in photosynthesis,†Philos. Trans. R. Soc. B Biol. Sci., vol. 363, no. 1504, pp. 2641–2650, 2008, doi: 10.1098/rstb.2008.0020.

M. R. Gauthier, G. N. A. Senhorinho, and J. A. Scott, “Microalgae under environmental stress as a source of antioxidants,†Algal Res., vol. 52, no. October, p. 102104, 2020, doi: 10.1016/j.algal.2020.102104.

J. Mehar, A. Shekh, M. U. Nethravathy, R. Sarada, V. S. Chauhan, and S. Mudliar, “Automation of pilot-scale open raceway pond: A case study of CO2-fed pH control on Spirulina biomass, protein and phycocyanin production,†J. CO2 Util., vol. 33, no. May, pp. 384–393, 2019, doi: 10.1016/j.jcou.2019.07.006.

A. Mufidatun, “Optimalisasi pH Media Terhadap Kontaminasi, Biomassa dan Kandungan Metabolit pada Kultur Massal Spirulina (Arthrospira platensis Gomont),†Universitas Gadjah Mada, 2021.

S. C. Silva et al., “Spirulina (Arthrospira platensis) protein-rich extract as a natural emulsifier for oil-in-water emulsions: Optimization through a sequential experimental design strategy,†Colloids Surfaces A Physicochem. Eng. Asp., vol. 648, no. March, 2022, doi: 10.1016/j.colsurfa.2022.129264.

M. M. El-Sheekh, L. H. S. Hassan, and H. H. Morsi, “Growth enhancement of Spirulina platensis through optimization of media and nitrogen sources,†Egypt. J. Bot., vol. 61, no. 1, pp. 61–69, 2021, doi: 10.21608/ejbo.2020.27927.1487.

R. Chaiklahan, N. Chirasuwan, T. Srinorasing, S. Attasat, A. Nopharatana, and B. Bunnag, “Enhanced biomass and phycocyanin production of Arthrospira (Spirulina) platensis by a cultivation management strategy: Light intensity and cell concentration,†Bioresour. Technol., vol. 343, no. September 2021, 2022, doi: 10.1016/j.biortech.2021.126077.

T. Takahashi, “Routine management of microalgae using autofluorescence from chlorophyll,†Molecules, vol. 24, no. 24, 2019, doi: 10.3390/molecules24244441.

N. U. F. Niangoran, D. Buso, G. Zissis, and T. Prudhomme, “Influence of light intensity and photoperiod on energy efficiency of biomass and pigment production of Spirulina (Arthrospira platensis),†OCL - Oilseeds fats, Crop. Lipids, vol. 28, 2021, doi: 10.1051/ocl/2021025.

D. T. Boukouvalas, R. A. Prates, C. R. Lima Leal, and S. A. de Araújo, “Automatic segmentation method for CFU counting in single plate-serial dilution,†Chemom. Intell. Lab. Syst., vol. 195, no. November, p. 103889, 2019, doi: 10.1016/j.chemolab.2019.103889.

P. Didpinrum, W. Siriangkhawut, K. Ponhong, P. Chantiratikul, and K. Grudpan, “A newly designed sticker-plastic sheet platform and smartphone-based digital imaging for protein assay in food samples with downscaling Kjeldahl digestion,†RSC Adv., vol. 11, no. 58, pp. 36494–36501, 2021, doi: 10.1039/d1ra04321h.

S. Arunima and S. Verulkar, “Comparative analysis of different protein estimation methods,†Pharma Innov. J., vol. 11, no. 4, pp. 2091–2095, 2022.

S. S. de Jesus, G. F. Ferreira, L. S. Moreira, M. R. Wolf Maciel, and R. Maciel Filho, “Comparison of several methods for effective lipid extraction from wet microalgae using green solvents,†Renew. Energy, vol. 143, pp. 130–141, 2019, doi: 10.1016/j.renene.2019.04.168.

G. G. Hewavitharana, D. N. Perera, S. B. Navaratne, and I. Wickramasinghe, “Extraction methods of fat from food samples and preparation of fatty acid methyl esters for gas chromatography: A review,†Arab. J. Chem., vol. 13, no. 8, pp. 6865–6875, 2020, doi: 10.1016/j.arabjc.2020.06.039.

Z. N. Hussain and A. A. A.-H. Jazie, “Extraction of Bio Oil From Fucus Vesiculosus and Cladophora Glomerata Algal Species,†Kufa J. Eng., vol. 12, no. 4, pp. 28–41, 2021, doi: 10.30572/2018/kje/120403.

H. K. Lichtenthaler and C. Buschmann, “Chlorophylls and Carotenoids Measurement and UV-VIS characterization Lichtenthaler 2001,†Curr. Protoc. Food Anal. Chem., vol. F4.3.1-F4., no. Supplement 1, pp. 1–8, 2001.

E. Daneshvar et al., “Insights into upstream processing of microalgae: A review,†Bioresour. Technol., vol. 329, no. February, 2021, doi: 10.1016/j.biortech.2021.124870.

M. Babu, K. Ashok, J. Senthil, T. Kalaiyarasu, J. S.-A. C. Journal, and U. 2020, “Effect of pH on Arthrospira platensis production,†Alochana Chakra J., vol. 4, no. 5, pp. 2297–2305, 2020, [Online]. Available: https://www.researchgate.net/publication/341312500.

N. E. Wahyuni, B. Rachmawati, T. T. Samudra, Y. S. Pradana, A. Budiman, and E. A. Suyono, “Variation of Biomass and Lipid Content of a Mixed Culture of Glagah Isolate and Arthrospira maxima in Thin-Layer Photobioreactor Using Three Different Media (BBM, Farmpion and TEAM),†AIP Conf. Proc., vol. 2260, 2020, doi: 10.1063/5.0016169.

W. Liu, J. Wang, and T. Liu, “Low pH rather than high CO2 concentration itself inhibits growth of Arthrospira,†Sci. Total Environ., vol. 666, pp. 572–580, 2019, doi: 10.1016/j.scitotenv.2019.02.312.

M. M. Jangir, S. Chowdhury, and V. Bhagavatula, “Differential response of photosynthetic apparatus towards alkaline pH treatment in NIES-39 and PCC 7345 strains of Arthrospira platensis,†Int. Microbiol., vol. 24, no. 2, pp. 219–231, 2021, doi: 10.1007/s10123-021-00160-6.

A. Vadlamani, S. Viamajala, B. Pendyala, and S. Varanasi, “Cultivation of Microalgae at Extreme Alkaline pH Conditions: A Novel Approach for Biofuel Production,†ACS Sustain. Chem. Eng., vol. 5, no. 8, pp. 7284–7294, 2017, doi: 10.1021/acssuschemeng.7b01534.

F. Jung, A. Krüger-Genge, P. Waldeck, and J. H. Küpper, “Spirulina platensis, a super food?,†J. Cell. Biotechnol., vol. 5, no. 1, pp. 43–54, 2019, doi: 10.3233/JCB-189012.

J. C. Beltrán-Rocha et al., “Some implications of natural increase of pH in microalgae cultivation and harvest by autoflocculation,†Lat. Am. J. Aquat. Res., vol. 49, no. 5, pp. 836–842, 2021, doi: 10.3856/vol49-issue5-fulltext-2691.

Z. Li et al., “Effects of Culture Conditions on the Performance of Arthrospira platensis and Its Production of Exopolysaccharides,†2022.

R. C. McBride et al., “Contamination Management in Low Cost Open Algae Ponds for Biofuels Production,†Ind. Biotechnol., vol. 10, no. 3, pp. 221–227, 2014, doi: 10.1089/ind.2013.0036.

L. S. Fanka, G. M. da Rosa, M. G. de Morais, and J. A. V. Costa, “Outdoor Production of Biomass and Biomolecules by Spirulina (Arthrospira) and Synechococcus cultivated with Reduced Nutrient Supply,†Bioenergy Res., vol. 15, no. 1, pp. 121–130, 2022, doi: 10.1007/s12155-021-10320-1.

Z. Zhu, J. Jian, and Y. Fa, “Overcoming the Biological Contamination in,†Molecules, 2020.

D. Pleissner, A. V. Lindner, and R. R. Ambati, “Techniques to Control Microbial Contaminants in Nonsterile Microalgae Cultivation,†Appl. Biochem. Biotechnol., vol. 192, no. 4, pp. 1376–1385, 2020, doi: 10.1007/s12010-020-03414-7.

L. G. Cardoso et al., “Scaling-up production of Spirulina sp. LEB18 grown in aquaculture wastewater,†Aquaculture, vol. 544, no. June, p. 737045, 2021, doi: 10.1016/j.aquaculture.2021.737045.

W. Chen et al., “Structural insights reveal the effective Spirulina platensis cell wall dissociation methods for multi-output recovery,†Bioresour. Technol., vol. 300, no. October 2019, p. 122628, 2020, doi: 10.1016/j.biortech.2019.122628.

K. S. H. Eldiehy, M. A. Fawzy, M. Rawway, and U. M. Abdul-, “Optimization of biomass and some metabolites productivity of Merismopedia tenuissima and Spirulina (Arthrospira) platensis grown under stress conditions,†Zanco J. Pure Appl. Sci., vol. 32, no. 5, 2020, doi: 10.21271/zjpas.32.5.14.

F. Cahyani, A. Ardi, T. T. Samudra, A. Budiman, and E. A. Suyono, “Biomass productivity and lipid content between natural mixed culture consortia and artificial mixed culture,†AIP Conf. Proc., vol. 2260, no. September, 2020, doi: 10.1063/5.0016184.

L. Peng, C. Q. Lan, Z. Zhang, C. Sarch, and M. Laporte, “Control of protozoa contamination and lipid accumulation in Neochloris oleoabundans culture: Effects of pH and dissolved inorganic carbon,†Bioresour. Technol., vol. 197, pp. 143–151, 2015, doi: 10.1016/j.biortech.2015.07.101.

M. M. S. Ismaiel, Y. M. El-Ayouty, and M. Piercey-Normore, “Role of pH on antioxidants production by Spirulina (Arthrospira) platensis,†Brazilian J. Microbiol., vol. 47, no. 2, pp. 298–304, 2016, doi: 10.1016/j.bjm.2016.01.003.

G. Sharma, M. Kumar, M. I. Ali, and N. D. Jasuja, “Effect of carbon content, salinity and pH on Spirulina platensis for phycocyanin, allophycocyanin and phycoerythrin accumulation,†J. Microb. Biochem. Technol., vol. 6, no. 4, pp. 202–206, 2014, doi: 10.4172/1948-5948.1000144.

H. S. H. Munawaroh et al., “Characterization and physicochemical properties of chlorophyll extract from Spirulina sp.,†J. Phys. Conf. Ser., vol. 1280, no. 2, 2019, doi: 10.1088/1742-6596/1280/2/022013.

D. Yin et al., “Effects of carbon concentration, pH, and bubbling depth on carbon dioxide absorption ratio in microalgae medium,†Environ. Sci. Pollut. Res., vol. 26, no. 32, pp. 32902–32910, 2019, doi: 10.1007/s11356-019-06287-4.

A. M. Abd El-Monem, M. M. Gharieb, A.-E. M. Hussian, and K. M. Doman, “Effect of pH on phytochemical and antibacterial activities of Spirulina platensis,†Int. J. Appl. Environ. Sci., vol. 13, no. 4, pp. 339–351, 2018, [Online]. Available: http://www.ripublication.com.

Z. I. Khalil, M. M. S. Asker, S. El-Sayed, and I. A. Kobbia, “Effect of pH on growth and biochemical responses of Dunaliella bardawil and Chlorella ellipsoidea,†World J. Microbiol. Biotechnol., vol. 26, no. 7, pp. 1225–1231, 2010, doi: 10.1007/s11274-009-0292-z.




DOI: http://dx.doi.org/10.18517/ijaseit.13.1.16582

Refbacks

  • There are currently no refbacks.



Published by INSIGHT - Indonesian Society for Knowledge and Human Development