Protein Isolate of Jack Bean Tempeh (Canavalia ensiformis) by Spray Drying Method with Variation of Inlet Temperature

Vira Putri Yarlina, Muhamad Rizki Ramdani, - Zaida, Nandi Sukri, Mohammad Djali, Robi Andoyo, Mohd Nizam Lani

Abstract


Protein isolation from beans is commonly carried out to increase protein availability and digestibility. Protein isolates made through the spray drying process have functional properties and characteristics. The variation of spray drying inlet air temperatures affects the properties of jack bean tempeh protein isolate (JTPI). The protein of jack bean tempeh was extracted and isolated using the method of the isoelectric point approach. The isoelectric point of jack bean tempeh was determined at a pH of 4.20 using the turbidimetry method. The research aimed to identify different inlet spray drying air temperatures on the physical characteristics and functional properties of JTPI. The spray drying method of JTPI was carried out using variations in inlet temperatures were 140°C, 150°C, and 160°C, and then moisture content, protein content, water holding capacity (WHC), and microstructure by Scanning Electron Microscopy were determined. The results showed that the 150°C inlet air temperature variation gave the lowest value for JTPI moisture content (3,91±0.04%). In comparison, the 160°C inlet air temperature variation gave the highest value for JTPI protein content (49.6±0, 30%) and JTPI water holding capacity (3.89±0.03 ml/g). The microstructure of JTPI obtained was porous, with a more spherical shape found at lower inlet temperature but wrinkled at the higher inlet temperature. The inlet temperature also affects the particle size JTPI. The inlet temperature of 160°C can be carried out to produce JTPI, which requires both high protein content and water holding capacity.

Keywords


Jack bean tempeh; inlet temperature; isoelectric point; protein isolate; spray drying.

Full Text:

PDF

References


M. Tessema et al., “Intake , Serum Transthyretin , Serum Amino Acids and Linear Growth of Children in Ethiopia,†pp. 1–17, 2018, doi: 10.3390/nu10111776.

M. Lonnie et al., “Protein for life: Review of optimal protein intake, sustainable dietary sources and the effect on appetite in ageing adults,†Nutrients, vol. 10, no. 3, pp. 1–18, 2018, doi: 10.3390/nu10030360.

M. Watford and G. Wu, “Protein,†Adv. Nutr., vol. 9, no. 5, pp. 651–653, 2018, doi: 10.1093/ADVANCES/NMY027.

G. Dukariya, S. Shah, G. Singh, and A. Kumar, “Mini-Review Article Open Access Soybean and Its Products : Nutritional and Health Benefits,†vol. 1, no. 2, pp. 22–29, 2020.

X. Li, W. Chen, J. Jiang, Y. Feng, Y. Yin, and Y. Liu, “Functionality of dairy proteins and vegetable proteins in nutritional supplement powders: A review,†Int. Food Res. J., vol. 26, no. 2, pp. 1651–1664, 2019.

[Badan Pusat Statistik Indonesia] BPS, “Impor Kedelai Menurut Negara Asal Utama,†2019.

J. Zhu, B. Arsovska, and K. Kozovska, “Acupuncture treatment in osteoarthritis,†Int. J. Recent Sci. Res., vol. 11, no. 02, pp. 37471–37472, 2020, doi: 10.24327/IJRSR.

M. El-Dairi and R. J. House, “Optic nerve hypoplasia,†Handbook of Pediatric Retinal OCT and the Eye-Brain Connection. pp. 285–287, 2019, doi: 10.1016/B978-0-323-60984-5.00062-7.

Z. H. Cao, J. M. Green-Johnson, N. D. Buckley, and Q. Y. Lin, “Bioactivity of soy-based fermented foods: A review,†Biotechnol. Adv., vol. 37, no. 1, pp. 223–238, 2019, doi: 10.1016/j.biotechadv.2018.12.001.

A. Saha and S. Mandal, “Nutritional Benefit of Soybean and Its Advancement in Research,†Sustain. Food Prod., vol. 5, pp. 6–16, 2019, doi: 10.18052/www.scipress.com/sfp.5.6.

A. D. Ahnan-Winarno, L. Cordeiro, F. G. Winarno, J. Gibbons, and H. Xiao, “Tempeh: A semicentennial review on its health benefits, fermentation, safety, processing, sustainability, and affordability,†Compr. Rev. Food Sci. Food Saf., vol. 20, no. 2, pp. 1717–1767, 2021, doi: 10.1111/1541-4337.12710.

A. Mutiara, S. Arini, and D. N. U. R. Afifah, “Current Research in Nutrition and Food Science The Effect of Tempeh Gembus Substitution on Protein Content , Calcium , Protein Digestibility and Organoleptic Quality of Meatballs,†vol. 07, no. 3, 2019.

R. Islamiyati and J. A. R. Hidayat, “Nutritional Value of Tofu Dregs Fermented with Various Levels of Tempeh Molds,†Pros. Semin. Nas. Kelaut., pp. 33–40, 2012.

X. Guan et al., “Changes of soybean protein during tofu processing,†Foods, vol. 10, no. 7, pp. 1–16, 2021, doi: 10.3390/foods10071594.

N. Andarwulan, L. Nuraida, D. R. Adawiyah, R. N. Triana, D. Agustin, and D. Gitapratiwi, “The Effect of Different Types of Soybeans on Tofu Quality,†J. Mutu Pangan, vol. 5, no. 2, pp. 66–72, 2018.

A. Cruz, “Nutritional and functional properties of protein concentrate and protein isolates of foods,†no. February, 2020.

M. Astawan and A. P. . Prayudani, “The Overview of Food Technology to Process Soy Protein Isolate and Its Application toward Food Industry,†World Nutr. J., vol. 4, no. 1, p. 12, 2020, doi: 10.25220/wnj.v04.s1.0003.

A. Afoakwah, A. C. O. J, N. F. Engman, and A. A. Hannah, “Spray Drying as an Appropriate Technology for the Food and Pharmaceutical Industries - A Review,†J. Environ. Sci. , Comput. Sci. Eng. Technol., vol. 1, no. 3, pp. 467–476, 2012.

H. John, S. M. Mansuri, S. K. Giri, and L. K. Sinha, “Rheological properties and particle size distribution of soy protein isolate as affected by drying methods,†Nutr. Food Sci., vol. 7, no. 5, pp. 1–9, 2018, doi: 10.19080/NFSIJ.2018.07.555721.

H. Wang et al., “Effect of Spray-Drying and Freeze-Drying on the Properties of Soybean Hydrolysates,†J. Chem., vol. 2020, 2020, doi: 10.1155/2020/9201457.

W. Liluva, “Effect of Spray-Drying and Freeze-Drying on the Composition, Physical Properties, and Sensory Quality of Pea Processing Water ( Liluva ),†2021.

L. Rodrigues et al., “Impact of Spray Drying Parameters on Lactose-Free Milk Powder Properties and Composition,†J. Agric. Stud., vol. 8, no. 3, p. 32, 2020, doi: 10.5296/jas.v8i3.15886.

J. M. Bastías-Montes, M. C. Choque-Chávez, J. Alarcón-Enos, R. Quevedo-León, O. Muñoz-Fariña, and C. Vidal-San-martín, “Effect of spray drying at 150, 160, and 170 °c on the physical and chemical properties of maqui extract (Aristotelia chilensis (Molina) Stuntz),†Chil. J. Agric. Res., vol. 79, no. 1, pp. 144–152, 2019, doi: 10.4067/S0718-58392019000100144.

B. Carter, H. Patel, D. M. Barbano, and M. A. Drake, “The effect of spray drying on the difference in flavor and functional properties of liquid and dried whey proteins, milk proteins, and micellar casein concentrates,†J. Dairy Sci., vol. 101, no. 5, pp. 3900–3909, 2018, doi: 10.3168/jds.2017-13780.

W. Katekhong and S. Charoenrein, “Influence of spray drying temperatures and storage conditions on physical and functional properties of dried egg white,†Dry. Technol., vol. 36, no. 2, pp. 169–177, 2018, doi: 10.1080/07373937.2017.1307218.

H. N. R. Starch et al., “Effects of Spray-Drying Inlet Temperature on the Production of High-Quality Native Rice Starch,†2021.

I. S. Banjare, K. Gandhi, K. Sao, and R. Sharma, “Optimization of spray-drying conditions for the preparation of whey protein concentrate–iron complex using response surface methodology,†Int. J. Food Prop., vol. 22, no. 1, pp. 1411–1424, 2019, doi: 10.1080/10942912.2019.1651735.

J. Toro-Sierra, J. Schumann, and U. Kulozik, “Impact of spray-drying conditions on the particle size of microparticulated whey protein fractions,†Dairy Sci. Technol., vol. 93, no. 4–5, pp. 487–503, 2013, doi: 10.1007/s13594-013-0124-7.

C. W. Park, M. A. Stout, and M. A. Drake, “The effect of spray-drying parameters on the flavor of nonfat dry milk and milk protein concentrate 70%,†J. Dairy Sci., vol. 99, no. 12, pp. 9598–9610, 2016, doi: 10.3168/jds.2016-11692.

N. Andriati, S. Anggrahini, W. Setyaningsih, I. Sofiana, D. A. Pusparasi, and F. Mossberg, “Physicochemical characterization of jack bean (Canavalia ensiformis) tempeh,†Food Res., vol. 2, no. 5, pp. 481–485, 2018, doi: 10.26656/fr.2017.2(5).300.

Ã. Bravo-Núñez, R. Garzón, C. M. Rosell, and M. Gómez, “Evaluation of starch-protein interactions as a function of pH,†Foods, vol. 8, no. 5, pp. 2–11, 2019, doi: 10.3390/foods8050155.

M. U. Makeri, S. A. Mohamed, R. Karim, Y. Ramakrishnan, and K. Muhammad, “Fractionation, physicochemical, and structural characterization of winged bean seed protein fractions with reference to soybean,†Int. J. Food Prop., vol. 20, no. 00, pp. 2220–2236, 2017, doi: 10.1080/10942912.2017.1369101.

M. Wang, L. Jiang, Y. Li, Q. Liu, S. Wang, and X. Sui, “Optimization of extraction process of protein isolate from mung bean,†Procedia Eng., vol. 15, pp. 5250–5258, 2011, doi: 10.1016/j.proeng.2011.08.973.

AOAC, Official Methods of Analysis of AOAC International. 2005.

H. K. Mæhre, L. Dalheim, G. K. Edvinsen, E. O. Elvevoll, and I. J. Jensen, “Protein determination—method matters,†Foods, vol. 7, no. 1, 2018, doi: 10.3390/foods7010005.

S. Budijanto and A. B. Sitanggang, “Characterization of Physicochemical and Functional Properties of Winged-Bean (Psophocarpus tetragonolobus L.) Protein Isolate,†J. Teknol. dan Ind. Pangan, vol. 22, no. 2, pp. 130–136, 2011, doi: 10.6066/4267.

A. Rahmawati, A. Murdiati, Y. Marsono, and S. Anggrahini, “Changes of complex carbohydrates on white jack bean (Canavalia ensiformis) during autoclaving-cooling cycles,†Curr. Res. Nutr. Food Sci., vol. 6, no. 2, pp. 470–480, 2018, doi: 10.12944/CRNFSJ.6.2.21.

Y. Zhang, Q. X. Zeng, Z. W. Zhu, and R. Zhou, “Effect of ultrasonic treatment on the gel strength of tilapia (Sarotherodon nilotica) surimi,†J. Food Process Eng., vol. 34, no. 2, pp. 533–548, 2011, doi: 10.1111/j.1745-4530.2009.00374.x.

L. Chel-Guerrero, V. Pérez-Flores, D. Betancur-Ancona, and G. Dávila-Ortiz, “Functional properties of flours and protein isolates from Phaseolus lunatus and Canavalia ensiformis seeds,†J. Agric. Food Chem., vol. 50, no. 3, pp. 584–591, 2002, doi: 10.1021/jf010778j.

Suparno, W. Kusumadati, and A. Sadono, “The Effect of Soybean Soaking Time And Rice Flour Proportion As Effort To Increase The Nutritional Quality Of The Tempe Effect,†Agrienvi, vol. 14, no. 2, pp. 50–58, 2020.

A. Tahir, M. Anwar, H. Mubeen, and S. Raza, “Evaluation of Physicochemical and Nutritional Contents in Soybean Fermented Food Tempeh by Rhizopus oligosporus,†J. Adv. Biol. Biotechnol., vol. 17, no. 1, pp. 1–9, 2018, doi: 10.9734/jabb/2018/26770.

S. C. Samantha, A. S. M. Bruna, R. M. Adriana, B. Fabio, A. R. Sandro, and R. C. A. Aline, “Drying by spray drying in the food industry: Micro-encapsulation, process parameters and main carriers used,†African J. Food Sci., vol. 9, no. 9, pp. 462–470, 2015, doi: 10.5897/ajfs2015.1279.

S. Huda, “The Effect of Evaporation and Spray Drying Temperature on Physical And Chemical Characteristics of Whey Powder,†J. Teknol. Has. Pertan., vol. 13, no. 2, pp. 84–93, 2020.

C. Chen, “Relationship between water activity and moisture content in floral honey,†Foods, vol. 8, no. 1, 2019, doi: 10.3390/foods8010030.

J. E. Obiegbuna and C. N. Ishiwu, “Effect of Inlet-Air Temperature on Physico-Chemical and Sensory Properties of Spray-Dried Soy Milk Sensory Properties of Spray-Dried Soy Milk,†African J. Food, Agric. Nutr. Dev., vol. 14, no. 6, pp. 2239–2253, 2014.

D. J. O’Callaghan and S. A. Hogan, “The physical nature of stickiness in the spray drying of dairy products - A review,†Dairy Sci. Technol., vol. 93, no. 4–5, pp. 331–346, 2013, doi: 10.1007/s13594-013-0114-9.

L. T. O’Donoghue et al., “Influence of particle size on the physicochemical properties and stickiness of dairy powders,†Int. Dairy J., vol. 98, pp. 54–63, 2019, doi: 10.1016/j.idairyj.2019.07.002.

E. M. Both, R. M. Boom, and M. A. I. Schutyser, “Particle morphology and powder properties during spray drying of maltodextrin and whey protein mixtures,†Powder Technol., vol. 363, pp. 519–524, 2020, doi: 10.1016/j.powtec.2020.01.001.

G. R. Chegini and B. Ghobadian, “Effect of spray-drying conditions on physical properties of orange juice powder,†Dry. Technol., vol. 23, no. 3, pp. 657–668, 2005, doi: 10.1081/DRT-200054161.

J. Vicente, J. Pinto, J. Menezes, and F. Gaspar, “Fundamental analysis of particle formation in spray drying,†Powder Technol., vol. 247, pp. 1–7, 2013, doi: 10.1016/j.powtec.2013.06.038.

C. Cao, X. Zhao, C. Zhang, Z. Ding, F. Sun, and C. Zhao, “Effect of inlet temperature on the physicochemical properties of spray-dried seed-watermelon seed protein powder,†J. Food Sci., vol. 85, no. 10, pp. 3442–3449, 2020, doi: 10.1111/1750-3841.15432.

A. N. A. Aryee, D. Agyei, and C. C. Udenigwe, Impact of processing on the chemistry and functionality of food proteins, Second Edi. Elsevier Ltd., 2018.

D. Q. Nguyen, T. H. Nguyen, S. Mounir, and K. Allaf, “Effect of feed concentration and inlet air temperature on the properties of soymilk powder obtained by spray drying,†Dry. Technol., vol. 36, no. 7, pp. 817–829, 2018, doi: 10.1080/07373937.2017.1357040.

R. M. Astuti, Widaningrum, N. Asiah, A. Setyowati, and R. Fitriawati, “Effect of physical modification on granule morphology, pasting behavior, and functional properties of arrowroot (Marantha arundinacea L) starch,†Food Hydrocoll., vol. 81, pp. 23–30, 2018, doi: 10.1016/j.foodhyd.2018.02.029.

M. Elleuch, D. Bedigian, S. Besbes, C. Blecker, and H. Attia, “Dietary fibre characteristics and antioxidant activity of sesame seed coats (testae),†Int. J. Food Prop., vol. 15, no. 1, pp. 25–37, 2012, doi: 10.1080/10942911003687231.

M. Belorio, M. Sahagún, and M. Gómez, “Influence of flour particle size distribution on the quality of maize gluten-free cookies,†Foods, vol. 8, no. 2, 2019, doi: 10.3390/foods8020083.

T. Meng, K. Ying, Y. Hong, and Q. Xu, “E ff ect of di ff erent particle sizes of nano - SiO 2 on the properties and microstructure of cement paste,†pp. 833–842, 2020.

T. Xia et al., “Effects of chicken myofibrillar protein concentration on protein oxidation and water holding capacity of its heat-induced gels,†J. Food Meas. Charact., vol. 12, no. 4, pp. 2302–2312, 2018, doi: 10.1007/s11694-018-9847-8.




DOI: http://dx.doi.org/10.18517/ijaseit.12.5.16228

Refbacks

  • There are currently no refbacks.



Published by INSIGHT - Indonesian Society for Knowledge and Human Development