GIS-Based Binary Logistic Regression for Landslide Susceptibility Mapping in the Central Part of Pacitan Regency, East Java, Indonesia

Muhammad Dimyati, Iqbal Putut Ash Shidiq, Dimas Bayu Ichsandya


Landslides are among the most hazardous phenomena in the Pacitan Regency, especially in the Sub-Districts of Pacitan, Kebonagung, Tulakan, and Arjosari, where the landslide mainly occurs. Strategic planning through GIS analysis can be applied to minimize potential losses and strengthen resilience to natural disasters. This study combined the binary logistic regression method and GIS to map the landslide susceptibility in the Sub-Districts of Pacitan, Kebonagung, Tulakan, and Arjosari, Pacitan Regency, East Java, Indonesia. An inventory map of 293 landslides was randomly divided into 80%-20% basis for model training and testing. Fourteen landslide conditioning factors including elevation, slope, aspect, plan curvature, profile curvature, topographic wetness index (TWI), land use, proximity to roads, proximity to rivers, proximity to faults, soil types, lithology, normalized difference vegetation index (NDVI) and rainfall was used. Analysis shows that fourteen landslide conditioning factors are contributed to 22.7%. The analysis shows that 36.59% or 17,734.95 Ha of the study area has high-very high susceptibility. The area of high-very high susceptibility is mainly located in the western part of the study area. It is related to high slope value and volcanic and sediment-volcanic rock from the formation of Arjosari and Mandalika. The validation using AUROC showed an excellent fit of 0.806. Validation of susceptibility map using testing data showed 0.711 accuracy value and 0.694 precision value, which meant that the susceptibility model was quite sensible. This information could be helpful to support the local government for hazard mitigation efforts.


Landslide susceptibility mapping; GIS; binary logistic regression.

Full Text:



Z. Zeng, Y. Wang, Y. Yan, N. Xiao, and D. Chen, ‘Analyzing Landslide-Prone Loess Area of Heifangtai, Gansu, China Using SBAS-InSAR Technique’, in IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, 2018, pp. 4889–4892, DOI: 10.1109/IGARSS.2018.8518328.

B. H. Martins, M. Suzuki, P. E. Yastika, and N. Shimizu, 'Ground surface deformation detection in complex landslide area—bobonaro, Timor-Leste—using SBAS DinSAR, UAV photogrammetry, and field observations', Geosci., vol. 10, no. 6, pp. 1–26, 2020, DOI: 10.3390/geosciences10060245.

H. Shu et al., 'Relation between land cover and landslide susceptibility in Val d'Aran, Pyrenees (Spain): Historical aspects, present situation, and forward prediction', Sci. Total Environ., vol. 693, pp. 1–14, 2019, DOI: 10.1016/j.scitotenv.2019.07.363.

H. Hong et al., 'Landslide susceptibility assessment at the Wuning area, China: a comparison between multi-criteria decision making, bivariate statistical and machine learning methods', vol. 96, no. 1. Springer Netherlands, 2018.

S. T. Piralilou et al., 'Landslide detection using multi-scale image segmentation and different machine learning models in the higher Himalayas', Remote Sens., vol. 11, no. 21, 2019, DOI: 10.3390/rs11212575.

Regency Office of Pacitan, ‘Bencana Pacitan Rusak 615 Rumah Warga dan 23 Ribu Meter Jalan’,, 2017. [Online]. Available: [Accessed: 18-Nov-2020].

S. Ali, P. Biermanns, R. Haider, and K. Reicherter, ‘Landslide susceptibility mapping by using GIS along the China–Pakistan economic corridor (Karakoram Highway), Pakistan’, Nat. Hazards Earth Syst. Sci., pp. 1–28, 2018, DOI: 10.5194/nhess-2018-39.

Y. W. Rabby and Y. Li, 'Landslide susceptibility mapping using integrated methods: A case study in the Chittagong hilly areas, Bangladesh', Geosci., vol. 10, no. 12, pp. 1–26, 2020, DOI: 10.3390/geosciences10120483.

P. Reichenbach, M. Rossi, B. D. Malamud, M. Mihir, and F. Guzzetti, 'A review of statistically-based landslide susceptibility models', Earth-Science Rev., vol. 180, no. March, pp. 60–91, 2018, doi: 10.1016/j.earscirev.2018.03.001.

L. Shano, T. K. Raghuvanshi, and M. Meten, 'Landslide susceptibility evaluation and hazard zonation techniques – a review', Geoenvironmental Disasters, vol. 7, no. 1, 2020, DOI: 10.1186/s40677-020-00152-0.

T. Mersha and M. Meten, 'GIS-based landslide susceptibility mapping and assessment using bivariate statistical methods in Simada area, northwestern Ethiopia', Geoenvironmental Disasters, vol. 7, no. 1, 2020, DOI: 10.1186/s40677-020-00155-x.

S. Fu et al., 'Landslide hazard probability and risk assessment at the community level: A case of western Hubei, China', Nat. Hazards Earth Syst. Sci., vol. 20, no. 2, pp. 581–601, 2020, DOI: 10.5194/nhess-20-581-2020.

B. Komac and M. Zorn, ‘Statistical landslide susceptibility modeling on a national scale: the example of Slovenia’, Rev. Roum. géographie, vol. 53, no. 2, pp. 179–195, 2009.

A. Arabameri, S. Saha, J. Roy, W. Chen, T. Blaschke, and D. T. Bui, 'Landslide Susceptibility Evaluation and Management Using Different Machine Learning Methods in The Gallicash River Watershed, Iran', Remote Sens., vol. 12, p. 475, 2020.

F. Huang et al., 'Landslide susceptibility prediction considering regional soil erosion based on machine-learning models', ISPRS Int. J. Geo-Information, vol. 9, no. 6, 2020, DOI: 10.3390/ijgi9060377.

Y. Zhao, R. Wang, Y. Jiang, H. Liu, and Z. Wei, 'GIS-based logistic regression for rainfall-induced landslide susceptibility mapping under different grid sizes in Yueqing, Southeastern China', Eng. Geol., vol. 259, 2019, DOI: 10.1016/j.enggeo.2019.105147.

A. Aditian, T. Kubota, and Y. Shinohara, 'Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia', Geomorphology, vol. 318, pp. 101–111, 2018, DOI: 10.1016/j.geomorph.2018.06.006.

J. Roy and S. Saha, 'Landslide susceptibility mapping using knowledge-driven statistical models in Darjeeling District, West Bengal, India', Geoenvironmental Disasters, vol. 6, no. 1, 2019, DOI: 10.1186/s40677-019-0126-8.

E. Psomiadis, A. Papazachariou, K. X. Soulis, D. S. Alexiou, and I. Charalampopoulos, ‘Landslide mapping and susceptibility assessment using geospatial analysis and earth observation data’, Land, vol. 9, no. 5, 2020, DOI: 10.3390/LAND9050133.

V. Vakhshoori, H. R. Pourghasemi, M. Zare, and T. Blaschke, 'Landslide susceptibility mapping using GIS-based data mining algorithms', Water (Switzerland), vol. 11, no. 11, pp. 7–13, 2019, DOI: 10.3390/w11112292.

X. Sun, J. Chen, Y. Bao, X. Han, J. Zhan, and W. Peng, 'Landslide susceptibility mapping using logistic regression analysis along the Jinsha river and its tributaries close to Derong and Deqin County, southwestern China', ISPRS Int. J. Geo-Information, vol. 7, no. 11, pp. 1–29, 2018, DOI: 10.3390/ijgi7110438.

BPS-Statistics of Pacitan Regency, ‘Pacitan Regency in Figures 2020’, BPS-Statistics of Pacitan Regency, 2020. [Online]. Available: [Accessed: 28-Dec-2020].

H. Samodra, S. Gafoer, and Tjokrosapoetro, 'Geological Map of the Pacitan Quadrangle, Java', Bandung, 1992.

L. Zhu and J. F. Huang, 'GIS-based logistic regression method for landslide susceptibility mapping in regional scale', J. Zhejiang Univ. Sci., vol. 7, no. 12, pp. 2007–2017, 2006, DOI: 10.1631/jzus.2006.A2007.

Q. H. Nguyen et al., 'Influence of data splitting on performance of machine learning models in prediction of shear strength of soil', Math. Probl. Eng., vol. 2021, no. February 2021, DOI: 10.1155/2021/4832864.

M. A. Machichi, A. Saadane, and P. L. Guth, 'On the viability of Neural Networks for landslide susceptibility mapping in the Rif, North of Morocco', Proc. - 2020 IEEE Int. Conf. Moroccan Geomatics, MORGEO 2020, pp. 0–5, 2020, DOI: 10.1109/Morgeo49228.2020.9121904.

K. Taalab, T. Cheng, and Y. Zhang, ‘Mapping landslide susceptibility and types using Random Forest', Big Earth Data, vol. 2, no. 2, pp. 159–178, 2018, DOI: 10.1080/20964471.2018.1472392.

H. R. Pourghasemi and M. Rossi, 'Landslide susceptibility modeling in a landslide prone area in Mazandarn Province, north of Iran: a comparison between GLM, GAM, MARS, and M-AHP methods', Theor. Appl. Climatol., vol. 130, no. 1–2, pp. 609–633, 2016, DOI: 10.1007/s00704-016-1919-2.

C. Xu, W. Zhang, Y. Yi, and Q. Xu, 'Landslide Susceptibility Mapping Using Logistic Regression Model Based On Information Value for the Region Along China-Thailand Railway from Saraburi To Sikhio, Thailand', in IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, 2019, vol. 2, pp. 9650–9653, DOI: 10.1109/igarss.2019.8900041.

Geospatial Information Agency, ‘Peta Rupabumi Digital Indonesia’, Peta RBI Indonesia, 2016. [Online]. Available: [Accessed: 25-Dec-2020].

Sampurno and H. Samodra, 'Geological Map of the Ponorogo Quadrangle, Java', Bandung, 1997.

BBSDLP Ministry of Agriculture, ‘Peta Jenis Tanah Kabupaten Pacitan 2016’, Bogor, Jawa-Barat, 2016.

BBWS Bengawan Solo, ‘Curah Hujan Harian Stasiun di DAS Bengawan Solo’, Sukoharjo, Jawa-Tengah, 2020.

L. Lombardo and P. M. Mai, 'Presenting logistic regression-based landslide susceptibility results', Eng. Geol., vol. 244, no. January, pp. 14–24, 2018, doi: 10.1016/j.enggeo.2018.07.019.

A. S. Soma, T. Kubota, and H. Mizuno, 'Optimization of causative factors using logistic regression and artificial neural network models for landslide susceptibility assessment in Ujung Loe Watershed, South Sulawesi Indonesia', J. Mt. Sci., vol. 16, no. 2, pp. 383–401, 2019, doi: 10.1007/s11629-018-4884-7.

B. Feby, A. L. Achu, K. Jimnisha, V. A. Ayisha, and R. Reghunath, 'Landslide susceptibility modelling using integrated evidential belief function based logistic regression method: A study from Southern Western Ghats, India', Remote Sens. Appl. Soc. Environ., vol. 20, no. August, 2020, DOI: 10.1016/j.rsase.2020.100411.

D. W. Hosmer and S. Lemeshow, 'Applied Logistic Regression'. New York: John Wiley and Sons, 2000.

A. Arabameri and H. R. Pourghasemi, 'Spatial Modeling of Gully Erosion Using Linear and Quadratic Discriminant Analyses in GIS and R'. Elsevier Inc., 2019.

V. Kotu and B. Deshpande, ‘Chapter 8 - Model Evaluation’, in Data Science (Second Edition), San Francisco: Morgan Kaufmann, 2019, pp. 263–279.

F. E. S. Silalahi, Pamela, Y. Arifianti, and F. Hidayat, 'Landslide susceptibility assessment using frequency ratio model in Bogor, West Java, Indonesia', Geosci. Lett., vol. 6, no. 1, 2019, DOI: 10.1186/s40562-019-0140-4.



  • There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development