Two-Stage Approach of Hierarchical Deep Feature Representation and Fusion Frameworks for Brain Image Analysis
Abstract
Keywords
Full Text:
PDFReferences
Q. V. Le, J. Han, J. W. Gray, P. T. Spellman, A. Borowsky, and B. Parvin, “Learning invariant features of tumor signatures,” Proc. - Int. Symp. Biomed. Imaging, pp. 302–305, 2012, doi: 10.1109/ISBI.2012.6235544.
Y. Xu, T. Mo, Q. Feng, P. Zhong, M. Lai, and E. I. C. Chang, “Deep learning of feature representation with multiple instance learning for medical image analysis,” ICASSP, IEEE Int. Conf. Acoust. Speech Signal Process. - Proc., no. 1, pp. 1626–1630, 2014, doi: 10.1109/ICASSP.2014.6853873.
H. Y. Xiong et al., “The human splicing code reveals new insights into the genetic determinants of disease,” Science (80-. )., vol. 347, no. 6218, 2015, doi: 10.1126/science.1254806.
M. M. Thaha, K. P. M. Kumar, B. S. Murugan, S. Dhanasekeran, P. Vijayakarthick, and A. S. Selvi, “Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images,” J. Med. Syst., vol. 43, no. 9, 2019, doi: 10.1007/s10916-019-1416-0.
J. P. Horwath, D. N. Zakharov, R. Mégret, and E. A. Stach, “Understanding important features of deep learning models for segmentation of high-resolution transmission electron microscopy images,” npj Comput. Mater., vol. 6, no. 1, pp. 1–9, 2020, doi: 10.1038/s41524-020-00363-x.
H. Mohsen, E.-S. A. El-Dahshan, E.-S. M. El-Horbaty, and A.-B. M. Salem, “Classification using deep learning neural networks for brain tumors,” Futur. Comput. Informatics J., vol. 3, no. 1, pp. 68–71, 2018, doi: 10.1016/j.fcij.2017.12.001.
P. Dahal, “Learning Embedding Space for Clustering from Deep Representations,” Proc. - 2018 IEEE Int. Conf. Big Data, Big Data 2018, no. April, pp. 3747–3755, 2019, doi: 10.1109/BigData.2018.8622629.
L. M. Q. De Santana, R. M. Santos, L. N. Matos, and H. T. Macedo, “Deep Neural Networks for Acoustic Modeling in the Presence of Noise,” IEEE Lat. Am. Trans., vol. 16, no. 3, pp. 918–925, 2018, doi: 10.1109/TLA.2018.8358674.
S. Spasov, L. Passamonti, A. Duggento, P. Liò, and N. Toschi, “A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer’s disease,” Neuroimage, vol. 189, no. January, pp. 276–287, 2019, doi: 10.1016/j.neuroimage.2019.01.031.
W. Wang, J. Lee, F. Harrou, and Y. Sun, “Early Detection of Parkinson’s Disease Using Deep Learning and Machine Learning,” IEEE Access, vol. 8, pp. 147635–147646, 2020, doi: 10.1109/ACCESS.2020.3016062.
Y. Huang, Z. Wu, L. Wang, S. Member, and T. Tan, “(Pattern Analysis and Machine Intelligence, IEEE Transactions on 2013) Feature Coding in Image Classification A Comprehensive Study.pdf,” pp. 1–15, 2013.
N. Wahab, A. Khan, and Y. S. Lee, “Transfer learning based deep CNN for segmentation and detection of mitoses in breast cancer histopathological images,” Microscopy, vol. 68, no. 3, pp. 216–233, 2019, doi: 10.1093/jmicro/dfz002.
S. Kido, Y. Hirano, and N. Hashimoto, “Detection and classification of lung abnormalities by use of convolutional neural network (CNN) and regions with CNN features (R-CNN),” 2018 Int. Work. Adv. Image Technol. IWAIT 2018, pp. 1–4, 2018, doi: 10.1109/IWAIT.2018.8369798.
C. Sun, A. Xu, D. Liu, Z. Xiong, F. Zhao, and W. Ding, “Deep Learning-Based Classification of Liver Cancer Histopathology Images Using Only Global Labels,” IEEE J. Biomed. Heal. Informatics, vol. 24, no. 6, pp. 1643–1651, 2020, doi: 10.1109/JBHI.2019.2949837.
P. K. Chahal, S. Pandey, and S. Goel, “A survey on brain tumor detection techniques for MR images,” Multimed. Tools Appl., vol. 79, no. 29–30, pp. 21771–21814, 2020, doi: 10.1007/s11042-020-08898-3.
J. Liu et al., “Applications of deep learning to MRI Images: A survey,” Big Data Min. Anal., vol. 1, no. 1, pp. 1–18, 2018, doi: 10.26599/BDMA.2018.9020001.
A. M. Hasan, H. A. Jalab, F. Meziane, H. Kahtan, and A. S. Al-Ahmad, “Combining Deep and Handcrafted Image Features for MRI Brain Scan Classification,” IEEE Access, vol. 7, pp. 79959–79967, 2019, doi: 10.1109/ACCESS.2019.2922691.
K. Mao, R. Tang, X. Wang, W. Zhang, and H. Wu, “Feature Representation Using Deep Autoencoder for Lung Nodule Image Classification,” Complexity, vol. 2018, no. d, 2018, doi: 10.1155/2018/3078374.
Y. Liu, F. Nie, Q. Gao, X. Gao, J. Han, and L. Shao, “Flexible unsupervised feature extraction for image classification,” Neural Networks, vol. 115, pp. 65–71, 2019, doi: 10.1016/j.neunet.2019.03.008.
L. Zheng, Y. Yang, and Q. Tian, “SIFT Meets CNN: A Decade Survey of Instance Retrieval,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 5, pp. 1224–1244, 2018, doi: 10.1109/TPAMI.2017.2709749.
J. Yang, W. Xiong, S. Li, and C. Xu, “Learning structured and non-redundant representations with deep neural networks,” Pattern Recognit., vol. 86, pp. 224–235, 2019, doi: 10.1016/j.patcog.2018.08.017.
B. Athiwaratkun and K. Kang, “Feature Representation in Convolutional Neural Networks,” pp. 6–11, 2015.
J. Yang, J. Y. Yang, D. Zhang, and J. F. Lu, “Feature fusion: Parallel strategy vs. serial strategy,” Pattern Recognit., vol. 36, no. 6, pp. 1369–1381, 2003, doi: 10.1016/S0031-3203(02)00262-5.
X. Yao, T. Huang, C. Wu, R.-X. Zhang, and L. Sun, “Federated Learning with Additional Mechanisms on Clients to Reduce Communication Costs,” pp. 1–12, 2019.
DOI: http://dx.doi.org/10.18517/ijaseit.12.4.16006
Refbacks
- There are currently no refbacks.
Published by INSIGHT - Indonesian Society for Knowledge and Human Development