Effect of Thermomechanical Treatment on Mechanical Properties and Microstructure of Titanium Alloy Ti-6AL-4V ELI for Orthopedic Applications

Sir Anderson, Erit Fernando, Jon Affi, Yuli Yetri, - Gunawarman

Abstract


Traffic accidents and osteoporosis significantly contribute to the incidence of fractures in Indonesia, increasing the need for orthopedic implant materials, such as titanium alloy Ti-6Al-4V ELI, which has good biocompatibility and availability in the market. However, its strength needs to be increased through thermomechanical treatment to maintain its durability. In this study, such treatment was applied with a combination of solution heat treatment at 950°C and a 1-hour holding time, followed by, subsequently, rapid cooling using water quenching, plastic deformation with deformation variations of 10%, 20%, and 30%, and aging treatment at a temperature of 550°C and holding time for 1.5 hours. The material surface microstructure was observed using an Olympus GX71 optical microscope; the chemical composition was measured using Electron dispersive X-ray, and; the hardness was measured using a Vickers microhardness tester. All data obtained were then analyzed to determine the effect of thermomechanical treatment on the increase and changes in the tested material’s hardness and microstructure, respectively. The results showed that thermomechanical treatment could increase the hardness of Ti-6Al-4V ELI, as expressed by the equation HVN = 135ε + 381.5, with a correlation coefficient of 0.991. Hence, it could be concluded that thermomechanical treatment can increase the hardness of Ti-6Al-4V ELI and, finally, change its microstructure, indicating an increase in the α phase. Therefore, Ti-6Al-4V ELI treated with thermomechanical treatment can be an alternate material in orthopedic implant applications.


Keywords


Titanium; Ti-6Al-4V ELI; thermomechanics; solution treatment; aging treatment.

Full Text:

PDF

References


M. Abdel-Hady Gepreel and M. Niinomi, “Biocompatibility of Ti-alloys for long-term implantation,” J. Mech. Behav. Biomed. Mater., vol. 20, pp. 407–415, 2013, doi: 10.1016/j.jmbbm.2012.11.014.

J. A. Disegi and L. Eschbach, “Stainless steel in bone surgery,” Injury, vol. 31, no. SUPPL. 4, 2000, doi: 10.1016/S0020-1383(00)80015-7.

M. Niinomi, “Biologically and Mechanically Biocompatible Titanium Alloys Ti-6Al-4V ELI,” vol. 49, no. 10, pp. 2170–2178, 2008, doi: 10.2320/matertrans.L-MRA2008828.

A. Ajiz, Gunawarman, and J. Affi, “The effects of short-time solution treatment and short-time aging on mechanical properties of Ti-6Al-4V for orthopaedic applications,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 5, no. 4, pp. 329–334, 2015, doi: 10.18517/ijaseit.5.4.556.

M. Niinomi, D. Eylon, S. Fujishiro, and C. Ouchi, “Effect of b Phase Stability at Room Temperature on Mechanical Properties in b -Rich a ؉ b Type Ti – 4 . 5Al – 3V – 2Mo – 2Fe Alloy,” vol. 42, no. 2, pp. 191–199, 2002.

Y. F. Xu, D. Q. Yi, H. Q. Liu, X. Y. Wu, B. Wang, and F. L. Yang, “Effects of cold deformation on microstructure, texture evolution and mechanical properties of Ti-Nb-Ta-Zr-Fe alloy for biomedical applications,” Mater. Sci. Eng. A, vol. 547, pp. 64–71, 2012, doi: 10.1016/j.msea.2012.03.081.

S. Anderson, Annisa, J. Affi, Y. Yetri, and G. Gunawarman, “The Effect of Aging Treatment on Mechanical Properties and Microstructures of Ti-12Cr in Ortodontic Applications,” IOP Conf. Ser. Mater. Sci. Eng., vol. 846, no. 1, 2020, doi: 10.1088/1757-899X/846/1/012066.

T. Akahori, M. Niinomi, H. Fukui, and A. Suzuki, “Fatigue, fretting fatigue and corrosion characteristics of biocompatible beta type titanium alloy conducted with various thermo-mechanical treatments,” Mater. Trans., vol. 45, no. 5, pp. 1540–1548, 2004, doi: 10.2320/matertrans.45.1540.

J. Yang, H. Yang, H. Yu, Z. Wang, and X. Zeng, “Corrosion Behavior of Additive Manufactured Ti-6Al-4V Alloy in NaCl Solution,” Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 48, no. 7, pp. 3583–3593, 2017, doi: 10.1007/s11661-017-4087-9.

B. Wu, Z. Pan, S. Li, D. Cuiuri, D. Ding, and H. Li, “The anisotropic corrosion behaviour of wire arc additive manufactured Ti-6Al-4V alloy in 3.5% NaCl solution,” Corros. Sci., vol. 137, no. August 2017, pp. 176–183, 2018, doi: 10.1016/j.corsci.2018.03.047.

Y. Xu, Y. Lu, J. Liang, and R. D. Sisson, “Microstructure and corrosion behaviour of additively manufactured Ti–6Al–4V with various post-heat treatments,” Mater. Sci. Technol. (United Kingdom), vol. 35, no. 1, pp. 89–97, 2019, doi: 10.1080/02670836.2018.1542052.

S. Gnanavel, S. Ponnusamy, L. Mohan, and C. Muthamizhchelvan, “In Vitro Corrosion Behaviour of Ti–6Al–4V and 316L Stainless Steel Alloys for Biomedical Implant Applications,” J. Bio- Tribo-Corrosion, vol. 4, no. 1, pp. 4–11, 2018, doi: 10.1007/s40735-017-0118-8.

S. Carquigny, J. Takadoum, and S. Ivanescu, “Corrosion and tribocorrosion study of 316L steel, Ti–6Al–4V and Ti–10Zr–10Nb–5Ta,” Tribol. - Mater. Surfaces Interfaces, vol. 13, no. 2, pp. 112–119, 2019, doi: 10.1080/17515831.2019.1596625.

M. Sarraf et al., “In vitro bioactivity and corrosion resistance enhancement of Ti-6Al-4V by highly ordered TiO 2 nanotube arrays,” J. Aust. Ceram. Soc., vol. 55, no. 1, pp. 187–200, 2019, doi: 10.1007/s41779-018-0224-1.

N. Hu et al., “Homogeneous Anodic TiO2 Nanotube Layers on Ti–6Al–4V Alloy with Improved Adhesion Strength and Corrosion Resistance,” Adv. Mater. Interfaces, vol. 6, no. 12, pp. 1–12, 2019, doi: 10.1002/admi.201801964.

M. Nabhani, R. Shoja Razavi, and M. Barekat, “Corrosion study of laser cladded Ti-6Al-4V alloy in different corrosive environments,” Eng. Fail. Anal., vol. 97, no. December 2018, pp. 234–241, 2019, doi: 10.1016/j.engfailanal.2019.01.023.

Y. Bai et al., “Improved corrosion behaviour of electron beam melted Ti-6Al–4V alloy in phosphate buffered saline,” Corros. Sci., vol. 123, pp. 289–296, 2017, doi: 10.1016/j.corsci.2017.05.003.

L. C. Campanelli, C. C. Bortolan, P. S. C. P. da Silva, C. Bolfarini, and N. T. C. Oliveira, “Effect of an amorphous titania nanotubes coating on the fatigue and corrosion behaviors of the biomedical Ti-6Al-4V and Ti-6Al-7Nb alloys,” J. Mech. Behav. Biomed. Mater., vol. 65, pp. 542–551, 2017, doi: 10.1016/j.jmbbm.2016.09.015.

S. Bose, L. C. Pathak, and R. Singh, “Response of boride coating on the Ti-6Al-4V alloy to corrosion and fretting corrosion behavior in Ringer’s solution for bio-implant application,” Appl. Surf. Sci., vol. 433, pp. 1158–1174, 2018, doi: 10.1016/j.apsusc.2017.09.223.

S. Baragetti and E. V. Arcieri, “Corrosion fatigue behavior of Ti-6Al-4 V: Chemical and mechanical driving forces,” Int. J. Fatigue, vol. 112, pp. 301–307, 2018, doi: 10.1016/j.ijfatigue.2018.02.033.

T. M. Chiu, M. Mahmoudi, W. Dai, A. Elwany, H. Liang, and H. Castaneda, “Corrosion assessment of Ti-6Al-4V fabricated using laser powder-bed fusion additive manufacturing,” Electrochim. Acta, vol. 279, pp. 143–151, 2018, doi: 10.1016/j.electacta.2018.04.189.

G. A. Longhitano et al., “Heat treatments effects on functionalization and corrosion behavior of Ti-6Al-4V ELI alloy made by additive manufacturing,” J. Alloys Compd., vol. 765, pp. 961–968, 2018, doi: 10.1016/j.jallcom.2018.06.319.

Q. Zhang, B. Duan, Z. Zhang, J. Wang, and C. Si, “Effect of ultrasonic shot peening on microstructure evolution and corrosion resistance of selective laser melted Ti-6Al-4V alloy,” J. Mater. Res. Technol., vol. 11, pp. 1090–1099, 2021, doi: 10.1016/j.jmrt.2021.01.091.

S. Kumar, V. Pandey, K. Chattopadhyay, and V. Singh, “Surface Nanocrystallization Induced by Ultrasonic Shot Peening and Its Effect on Corrosion Resistance of Ti–6Al–4V Alloy,” Trans. Indian Inst. Met., vol. 72, no. 3, pp. 789–792, 2019, doi: 10.1007/s12666-018-1531-5.

F. M. Kgoete, A. P. I. Popoola, and O. S. I. Fayomi, “Influence of spark plasma sintering on microstructure and corrosion behaviour of Ti-6Al-4V alloy reinforced with micron-sized Si3N4 powder,” Def. Technol., vol. 14, no. 5, pp. 403–407, 2018, doi: 10.1016/j.dt.2018.04.011.

M. Chellappa and U. Vijayalakshmi, “Electrophoretic deposition of silica and its composite coatings on Ti-6Al-4V, and its in vitro corrosion behaviour for biomedical applications,” Mater. Sci. Eng. C, vol. 71, pp. 879–890, 2017, doi: 10.1016/j.msec.2016.10.075.

R. Yazdi, H. M. Ghasemi, C. Wang, and A. Neville, “Bio-corrosion behaviour of oxygen diffusion layer on Ti-6Al-4V during tribocorrosion,” Corros. Sci., vol. 128, pp. 23–32, 2017, doi: 10.1016/j.corsci.2017.08.031.

J. Fojt et al., “Corrosion behaviour and cell interaction of Ti-6Al-4V alloy prepared by two techniques of 3D printing,” Mater. Sci. Eng. C, vol. 93, no. January, pp. 911–920, 2018, doi: 10.1016/j.msec.2018.08.066.

A. A. Rozali, N. R. N. Masdek, M. C. Murad, Z. Salleh, and K. M. Hyie, “The effect of pH value on the corrosion behaviour of Ti-6Al-4V and 316L SS alloys under physiological environment,” Chem. Eng. Trans., vol. 63, pp. 769–774, 2018, doi: 10.3303/CET1863129.

Y. Xu, J. Wang, X. Zhang, P. Wang, J. Shi, and F. Huo, “Corrosion behaviour of Ti-6Al-4V alloy as dental implant containing fluoride ions,” Int. J. Electrochem. Sci., vol. 12, no. 11, pp. 10308–10316, 2017, doi: 10.20964/2017.11.04.

A. C. Hee et al., “Corrosion behaviour and microstructure of tantalum film on Ti6Al4V substrate by filtered cathodic vacuum arc deposition,” Thin Solid Films, vol. 636, pp. 54–62, 2017, doi: 10.1016/j.tsf.2017.05.030.

M. Buciumeanu et al., “Study of the tribocorrosion behaviour of Ti6Al4V – HA biocomposites,” Tribol. Int., vol. 107, pp. 77–84, 2017, doi: 10.1016/j.triboint.2016.11.029.

X. Gong et al., “Building direction dependence of corrosion resistance property of Ti–6Al–4V alloy fabricated by electron beam melting,” Corros. Sci., vol. 127, pp. 101–109, 2017, doi: 10.1016/j.corsci.2017.08.008.

O. Heintz, V. Vignal, H. Krawiec, and J. Loch, “Passivity and corrosion behaviour of Ti-10Mo-4Zr and Ti-6Al-4V alloys after long-term ageing in Ringer’s solution at 37 °C,” J. Solid State Electrochem., vol. 21, no. 5, pp. 1445–1455, 2017, doi: 10.1007/s10008-017-3506-6.

P. Chandramohan, S. Bhero, B. A. Obadele, and P. A. Olubambi, “Laser additive manufactured Ti–6Al–4V alloy: tribology and corrosion studies,” Int. J. Adv. Manuf. Technol., vol. 92, no. 5–8, pp. 3051–3061, 2017, doi: 10.1007/s00170-017-0410-2.

V. Pejaković, V. Totolin, and M. Rodríguez Ripoll, “Tribocorrosion behaviour of Ti6Al4V in artificial seawater at low contact pressures,” Tribol. Int., vol. 119, no. October 2017, pp. 55–65, 2018, doi: 10.1016/j.triboint.2017.10.025.

L. Zhang, J. Xu, B. Chen, H. Yu, and Z. Lian, “Microhardness and corrosion resistance behaviour of Ti-6Al-4V alloy-coloured surface under WEDM-HS process,” Micro Nano Lett., vol. 12, no. 9, pp. 618–623, 2017, doi: 10.1049/mnl.2017.0037.

J. J. de Damborenea, M. A. Arenas, M. A. Larosa, A. L. Jardini, C. A. de Carvalho Zavaglia, and A. Conde, “Corrosion of Ti6Al4V pins produced by direct metal laser sintering,” Appl. Surf. Sci., vol. 393, pp. 340–347, 2017, doi: 10.1016/j.apsusc.2016.10.031.

Y. Zhang, O. Addison, F. Yu, B. C. R. Troconis, J. R. Scully, and A. J. Davenport, “Time-dependent Enhanced Corrosion of Ti6Al4V in the Presence of H2O2 and Albumin,” Sci. Rep., vol. 8, no. 1, pp. 1–11, 2018, doi: 10.1038/s41598-018-21332-x.

J. Li et al., “Electrochemical corrosion, wear and cell behavior of ZrO2/TiO2 alloyed layer on Ti-6Al-4V,” Bioelectrochemistry, vol. 121, pp. 105–114, 2018, doi: 10.1016/j.bioelechem.2018.01.011.

K. Soorya Prakash, P. M. Gopal, D. Anburose, and V. Kavimani, “Mechanical, corrosion and wear characteristics of powder metallurgy processed Ti-6Al-4V/B4C metal matrix composites,” Ain Shams Eng. J., vol. 9, no. 4, pp. 1489–1496, 2018, doi: 10.1016/j.asej.2016.11.003.

G. Rasool, Y. El Shafei, and M. M. Stack, “Mapping tribo-corrosion behaviour of TI-6AL-4V eli in laboratory simulated hip joint environments,” Lubricants, vol. 8, no. 7, 2020, doi: 10.3390/LUBRICANTS8070069.

L. Semetse, B. A. Obadele, L. Raganya, J. Geringer, and P. A. Olubambi, “Fretting corrosion behaviour of Ti-6Al-4V reinforced with zirconia in foetal bovine serum,” J. Mech. Behav. Biomed. Mater., vol. 100, no. January, p. 103392, 2019, doi: 10.1016/j.jmbbm.2019.103392.

J. Dai, H. Zhang, C. Sun, S. Li, C. Chen, and Y. Yang, “The effect of Nb and Si on the hot corrosion behaviors of TiAl coatings on a Ti-6Al-4V alloy,” Corros. Sci., vol. 168, no. February, p. 108578, 2020, doi: 10.1016/j.corsci.2020.108578.

B. Pazhanivel, P. Sathiya, and G. Sozhan, “Ultra-fine bimodal (α + β) microstructure induced mechanical strength and corrosion resistance of Ti-6Al-4V alloy produced via laser powder bed fusion process,” Opt. Laser Technol., vol. 125, no. October 2019, p. 106017, 2020, doi: 10.1016/j.optlastec.2019.106017.

O. S. Adesina, B. A. Obadele, G. A. Farotade, D. A. Isadare, A. A. Adediran, and P. P. Ikubanni, “Influence of phase composition and microstructure on corrosion behavior of laser based Ti–Co–Ni ternary coatings on Ti–6Al–4V alloy,” J. Alloys Compd., vol. 827, p. 154245, 2020, doi: 10.1016/j.jallcom.2020.154245.

Q. Sui et al., “Effect of build orientation on the corrosion behavior and mechanical properties of selective laser melted Ti-6Al-4V,” Metals (Basel)., vol. 9, no. 9, 2019, doi: 10.3390/met9090976.

P. Bocchetta, L. Y. Chen, J. D. C. Tardelli, A. C. Dos Reis, F. Almeraya-Calderón, and P. Leo, “Passive layers and corrosion resistance of biomedical ti-6al-4v and β-ti alloys,” Coatings, vol. 11, no. 5, 2021, doi: 10.3390/coatings11050487.

P. Qin et al., “Corrosion and passivation behavior of laser powder bed fusion produced Ti-6Al-4V in static/dynamic NaCl solutions with different concentrations,” Corros. Sci., vol. 191, no. May, p. 109728, 2021, doi: 10.1016/j.corsci.2021.109728.

X. Zhou et al., “Microstructural evolution and corrosion behavior of Ti–6Al–4V alloy fabricated by laser metal deposition for dental applications,” J. Mater. Res. Technol., vol. 14, no. Lmd, pp. 1459–1472, 2021, doi: 10.1016/j.jmrt.2021.07.006.

L. Y. Chen et al., “Corrosion behavior and characteristics of passive films of laser powder bed fusion produced Ti–6Al–4V in dynamic Hank’s solution,” Mater. Des., vol. 208, p. 109907, 2021, doi: 10.1016/j.matdes.2021.109907.

S. Nisaimun, P. Poolcharuansin, P. Visuttipitukul, and P. Klomjit, “Improving corrosion resistance of 3D printed Ti-6Al-4V by TiN coating,” J. Met. Mater. Miner., vol. 31, no. 2, pp. 137–146, 2021, doi: 10.14456/jmmm.2021.31.

J. Cheng et al., “Corrosion behavior of As-Cast Ti–10Mo–6Zr–4Sn–3Nb and Ti–6Al–4B in hank’s solution: A comparison investigation,” Metals (Basel)., vol. 11, no. 1, pp. 1–15, 2021, doi: 10.3390/met11010011.

J. V. de Sousa Araujo et al., “Thermomechanical treatment and corrosion resistance correlation in the AA2198 Al–Cu–Li alloy,” Corros. Eng. Sci. Technol., vol. 54, no. 7, pp. 575–586, 2019, doi: 10.1080/1478422X.2019.1637077.

D. Yuan, J. Wang, H. Chen, W. Xie, H. Wang, and B. Yang, “Mechanical properties and microstructural evolution of a Cu–Cr–Ag alloy during thermomechanical treatment,” Mater. Sci. Technol. (United Kingdom), vol. 34, no. 12, pp. 1433–1440, 2018, doi: 10.1080/02670836.2018.1459094.

B. Mishra, D. Vijay Kumar, C. Pakhare, K. N. Jonnalagadda, and M. J. N. V. Prasad, “Effect of thermomechanical processing on microstructural evolution and deformation behaviour of polycrystalline magnesium under quasi-static and high strain rate conditions,” Philos. Mag., vol. 97, no. 14, pp. 1071–1087, 2017, doi: 10.1080/14786435.2017.1290294.

S. Tonpe and U. Kamachi Mudali, “Effect of thermomechanical process on microstructural evolution, mechanical and corrosion properties of zircaloy-4 tubes of mock-up dissolver vessel,” Mater. Manuf. Process., vol. 32, no. 1, pp. 27–33, 2017, doi: 10.1080/10426914.2015.1090589.

M. Motyka and J. Sieniawski, “The influence of initial plastic deformation on microstructure and hot plasticity of α+β titanium alloys,” Arch. Mater. Sci. Eng., vol. 41, no. 2, pp. 95–103, 2010.

P. West Conshohocken, ASTM 348. Standard Test Methods for Knoop and Vickers hardness materials. .

W. D. Callister, “Materials science and engineering: An introduction (2nd edition),” Mater. Des., vol. 12, no. 1, p. 59, 1991, doi: 10.1016/0261-3069(91)90101-9.

and E. W. C. (1994) Boyer, R., G. Welsch, Materials Properties Handbook: Titanium Alloys. ASM International, 65–74. .

T. Trnava, S. Republic, and B. Polytechnic, “The influence of heat treatment on the microstructure of the casted ti6al4v titanium alloy,” Mater. World, vol. 2, pp. 1–6, 2007.

G. Gunawarman, ). Konsep dan Teori Metalurgi Fisik. Yogyakarta (ID): Andi Offset. 2013.

R. K. Gupta, V. A. Kumar, C. Mathew, and G. S. Rao, “Strain hardening of Titanium alloy Ti6Al4V sheets with prior heat treatment and cold working,” Mater. Sci. Eng. A, vol. 662, pp. 537–550, 2016, doi: 10.1016/j.msea.2016.03.094.

R. Reda, A. A. Nofal, and A. A. Hussein, “Effect of Quenching Temperature on the Mechanical Properties of Cast Ti‐6Al‐4V Alloy,” www.me‐journal.org J. Metall. Eng., vol. 2, no. 1, pp. 48–54, 2013.

F. J. Gil, M. P. Ginebra, J. M. Manero, and J. A. Planell, “Formation of α-Widmanstätten structure: Effects of grain size and cooling rate on the Widmanstätten morphologies and on the mechanical properties in Ti6Al4V alloy,” J. Alloys Compd., vol. 329, no. 1–2, pp. 142–152, 2001, doi: 10.1016/S0925-8388(01)01571-7.




DOI: http://dx.doi.org/10.18517/ijaseit.11.6.15964

Refbacks

  • There are currently no refbacks.



Published by INSIGHT - Indonesian Society for Knowledge and Human Development