### Classification of Air-Cured Tobacco Leaf Pests Using Pruning Convolutional Neural Networks and Transfer Learning

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

C. S. Marzan and C. R. Ruiz, “Automated tobacco grading using image processing techniques and a convolutional neural network,” Int. J. Mach. Learn. Comput., vol. 9, no. 6, pp. 807–813, 2019, doi: 10.18178/ijmlc.2019.9.6.877.

A. Harjoko, A. Prahara, T. W. Supardi, I. Candradewi, R. Pulungan, and S. Hartati, “Image processing approach for grading tobacco leaf based on color and quality,” Int. J. Smart Sens. Intell. Syst., vol. 12, no. 1, pp. 1–10, 2019, doi: 10.21307/ijssis-2019-010.

D. S. Guru, P. B. Mallikarjuna, S. Manjunath, and M. M. Shenoi, “Machine Vision Based Classification Of Tobacco Leaves For Automatic Harvesting,” Intell. Autom. Soft Comput., vol. 18, no. 5, pp. 581–590, 2012, doi: 10.1080/10798587.2012.10643267.

Y. Sun, H. Q. Wang, Z. Y. Xia, J. H. Ma, and M. Z. Lv, “Tobacco-disease Image Recognition via Multiple-Attention Classification Network,” J. Phys. Conf. Ser., vol. 1584, no. 1, 2020, doi: 10.1088/1742-6596/1584/1/012008.

D. I. Swasono, H. Tjandrasa, and C. Fatichah, “Classification of tobacco leaf pests using VGG16 transfer learning,” Proc. 2019 Int. Conf. Inf. Commun. Technol. Syst. ICTS 2019, pp. 176–181, 2019, doi: 10.1109/ICTS.2019.8850946.

Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, “Gradient-based learning applied to document recognition”, Proc. IEEE 86 (11) (1998) 2278–2324, 1998.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, “Going deeper with convolutions”, In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9, 2015.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition”, IEEE Conf. Comput. Vis. Pattern Recognit. 770–778 (2016). doi:10.1109/CVPR.2016.90, 2016.

J. Zou, T. Rui, Y. Zhou, C. Yang, and S. Zhang, “Convolutional neural network simplification via feature map pruning,” Comput. Electr. Eng., vol. 70, pp. 950–958, 2018, doi: 10.1016/j.compeleceng.2018.01.036.

G. Li, J. Wang, H. W. Shen, K. Chen, G. Shan, and Z. Lu, “CNNPruner: Pruning convolutional neural networks with visual analytics,” IEEE Trans. Vis. Comput. Graph., vol. 27, no. 2, pp. 1364–1373, 2021, doi: 10.1109/TVCG.2020.3030461.

B. O. Ayinde, T. Inanc, and J. M. Zurada, “Redundant feature pruning for accelerated inference in deep neural networks,” Neural Networks, vol. 118, pp. 148–158, 2019, doi: 10.1016/j.neunet.2019.04.021.

C. Yang et al., “Structured Pruning of Convolutional Neural Networks via L1 Regularization,” IEEE Access, vol. 7, pp. 106385–106394, 2019, doi: 10.1109/ACCESS.2019.2933032.

P. Singh, V. K. Verma, P. Rai, and V. P. Namboodiri, “Acceleration of Deep Convolutional Neural Networks Using Adaptive Filter Pruning,” IEEE J. Sel. Top. Signal Process., vol. 14, no. 4, pp. 838–847, 2020, doi: 10.1109/JSTSP.2020.2992390.

C. Liu and H. Wu, “Channel pruning based on mean gradient for accelerating Convolutional Neural Networks,” Signal Processing, vol. 156, pp. 84–91, 2019, doi: 10.1016/j.sigpro.2018.10.019.

A. H. Ashouri, T. S. Abdelrahman, and A. Dos Remedios, “Retraining-free methods for fast on-the-fly pruning of convolutional neural networks,” Neurocomputing, vol. 370, no. xxxx, pp. 56–69, 2019, doi: 10.1016/j.neucom.2019.08.063.

F. E. Fernandes and G. G. Yen, “Pruning Deep Convolutional Neural Networks Architectures with Evolution Strategy,” Inf. Sci. (Ny)., vol. 552, pp. 29–47, 2021, doi: 10.1016/j.ins.2020.11.009.

S. K. Yeom et al., “Pruning by explaining: A novel criterion for deep neural network pruning,” Pattern Recognit., vol. 115, 2021, doi: 10.1016/j.patcog.2021.107899.

A. Jordao, M. Lie, and W. R. Schwartz, “Discriminative Layer Pruning for Convolutional Neural Networks,” IEEE J. Sel. Top. Signal Process., vol. 14, no. 4, pp. 828–837, 2020, doi: 10.1109/JSTSP.2020.2975987.

F. Tung and G. Mori, “Deep Neural Network Compression by In-Parallel Pruning-Quantization,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 3, pp. 568–579, 2020, doi: 10.1109/TPAMI.2018.2886192.

Y. Liang, W. Liu, S. Yi, H. Yang, and Z. He, “Filter pruning-based two-step feature map reconstruction,” Signal, Image Video Process., vol. 15, no. 7, pp. 1555–1563, 2021, doi: 10.1007/s11760-021-01888-4.

C. Qi et al., “An efficient pruning scheme of deep neural networks for Internet of Things applications,” EURASIP J. Adv. Signal Process., vol. 2021, no. 1, 2021, doi: 10.1186/s13634-021-00744-4.

E. Jeczmionek and P. A. Kowalski, “Flattening layer pruning in convolutional neural networks,” Symmetry (Basel)., vol. 13, no. 7, pp. 1–13, 2021, doi: 10.3390/sym13071147.

S. Zhang, G. Wu, J. Gu, and J. Han, “Pruning convolutional neural networks with an attention mechanism for remote sensing image classification,” Electron., vol. 9, no. 8, pp. 1–19, 2020, doi: 10.3390/electronics9081209.

DOI: http://dx.doi.org/10.18517/ijaseit.12.3.15950

### Refbacks

- There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development