Genetic Diversity and Chemicals Profile of Ginger (Zingiber officinale Roscoe) in Indonesia

Dyah Subositi, Harto Widodo, Rohmat Mujahid, Nuning Rahmawati, Fanie Indrian Mustofa, Sari Haryanti, Ika Yanti Marfuatush Sholikhah, Anshary Maruzy, Yuli Widiyastuti


Zingiber officinale is a medicinal plant used to treat various ailments by many ethnic groups in Indonesia. Information on genetic variation and chemical profiling of this plant, especially in the traditional herbal formula in Indonesia, is still limited. The objective of this study was to determine genetic variation and chemical profiling of Zingiber officinale accessions to compile database information. Inter-Simple Sequence Repeats (ISSR) were used to evaluate the genetic diversity of Z. officinale, and Fourier transforms infrared (FTIR) was used to analyze chemical profiling. Dice index similarity was used to calculate a similarity index between accessions, and Unweighted Pair Group Method Using Arithmetic Mean (UPGMA) was used to construct a dendrogram. The ISSR method for genetic profiling proved that Z. officinale from 14 selected ethnic groups were divided into three clusters. The similarity index among Z. officinale accessions ranged from 0.567 to 0.971, indicating high genetic diversity. The high degree of genetic variety detected by ISSR markers demonstrated the marker's efficiency in detecting variation in this Z. offcinale germplasm collection. The FTIR technique's phytochemical profile of Z. officinale analysis shows slight differences in spectra and can be grouped into three clusters. There was no correlation of clustering of Z. officinale accessions between geographical origins based on genetic and chemical profiles. Our findings may be valuable information for breeding, conservation, and utilization of Z. officinale.


Zingiber officinale; genetic diversity; ISSR; FTIR.

Full Text:



N. Muhammad et al., “Genetic diversity encourages conservation of threatened ethno medicinally important plant species in Koz Abakhel District Swat , KP , Pakistan,” Int. J. Bot. Stud., vol. 4, no. 4, pp. 151–161, 2019.

Ü. Karik et al., “Exploring the genetic diversity and population structure of Turkish laurel germplasm by the iPBS-retrotransposon marker system,” Agronomy, vol. 9, no. 10, pp. 1–14, 2019, doi: 10.3390/agronomy9100647.

S. dkk Wahyono, “Laporan Nasional : Ekplorasi Pengetahuan Lokal Etnomedisin dan Tumbuhan Obat di Indonesia Berbasis Komunitas 2012,” Jakarta, 2012.

S.-P. Cheng et al., “Haplotype-resolved genome assembly and allele-specific gene expression in cultivated ginger,” Hortic. Res., vol. 8, no. 1, 2021, doi: 10.1038/s41438-021-00599-8.

Q. Q. Mao et al., “Bioactive compounds and bioactivities of ginger (zingiber officinale roscoe),” Foods, vol. 8, no. 6, pp. 1–21, 2019, doi: 10.3390/foods8060185.

N. Azizah, S. L. Purnamaningsih, and S. Fajriani, “Land characteristics impact productivity and quality of ginger (Zingiber officinale rosc) in Java, Indonesia,” Agrivita, vol. 41, no. 3, pp. 439–449, 2019, doi: 10.17503/agrivita.v41i3.2321.

F. Biondi et al., “Environmental conditions and agronomical factors influencing the levels of phytochemicals in brassica vegetables responsible for nutritional and sensorial properties,” Appl. Sci., vol. 11, no. 4, pp. 1–21, 2021, doi: 10.3390/app11041927.

E. D. Purwakusumah, M. Rafi, U. D. Safitri, W. Nurcholis, and M. A. Z. Adzkiya, “IDENTIFIKASI DAN AUTENTIKASI JAHE MERAH MENGGUNAKAN KOMBINASI SPEKTROSKOPI FTIR DAN KEMOMETRIK (Identification and Authentication of Jahe Merah Using Combination of FTIR Spectrocopy and Chemometrics),” J. Agritech, vol. 34, no. 01, pp. 82–87, 2014, [Online]. Available:

M. Hamouda, “Molecular analysis of genetic diversity in population of Silybum marianum (L.) Gaertn in Egypt,” J. Genet. Eng. Biotechnol., vol. 17, no. 1, pp. 1–9, 2019, doi: 10.1186/s43141-019-0011-6.

S. Galatali, N. Abdul Ghafoor, and E. Kaya, “Characterization of Olive (Olea Europaea L.) Genetic Resources via PCR-Based Molecular Marker Systems,” Eur. J. Biol. Biotechnol., vol. 2, no. 1, pp. 26–33, 2021, doi: 10.24018/ejbio.2021.2.1.146.

J. Hayat et al., “Phytochemical screening, polyphenols, flavonoids and tannin content, antioxidant activities and FTIR characterization of Marrubium vulgare L. from 2 different localities of Northeast of Morocco,” Heliyon, vol. 6, no. 11, p. e05609, 2020, doi: 10.1016/j.heliyon.2020.e05609.

E. S. Cardoso et al., “Genetic diversity of zingiber officinale (Zingiberaceae) germplasm grown in urban and rural backyards in mato grosso, Brazil,” Genet. Mol. Res., vol. 19, no. 2, pp. 1–12, 2020, doi: 10.4238/gmr18576.

N. A. Ismail, M. Y. Rafii, T. M. M. Mahmud, M. M. Hanafi, and G. Miah, “Genetic Diversity of Torch Ginger (Etlingera elatior) Germplasm Revealed by ISSR and SSR Markers,” Biomed Res. Int., vol. 2019, 2019, doi: 10.1155/2019/5904804.

M. Ma, T. Wang, and B. Lu, “Assessment of genetic diversity in Amomum tsao-ko Crevost & Lemarié, an important medicine food homologous crop from Southwest China using SRAP and ISSR markers,” Genet. Resour. Crop Evol., vol. 68, no. 6, pp. 2655–2667, 2021, doi: 10.1007/s10722-021-01204-6.

S. Rajkumari and K. Sanatombi, “Genetic Diversity Analysis of Hedychium Species Based on RAPD and ISSR Markers,” Proc. Natl. Acad. Sci. India Sect. B - Biol. Sci., vol. 89, no. 2, pp. 623–629, 2019, doi: 10.1007/s40011-018-0976-y.

N. Akhtar et al., “Issr‐based genetic diversity assessment of genus jasminum l. (oleaceae) from pakistan,” Plants, vol. 10, no. 7, pp. 1–14, 2021, doi: 10.3390/plants10071270.

G. C. Teixeira, E. R. Konzen, J. C. T. FariaIII, D. S. Gonçalves, D. de Carvalho, and G. E. Brondani, “Genetic diversity analysis of two Eucalyptus species using ISSR markers Diversidade genética de duas espécies de Eucalyptus usando marcadores ISSR Resumo,” pp. 270–278, 2020.

F. C. Felix, K. P. T. Das Chagas, C. D. S. Ferrari, F. D. A. Vieira, and M. V. Pacheco, “Applications of issr markers in studies of genetic diversity of Pityrocarpa moniliformis,” Rev. Caatinga, vol. 33, no. 4, pp. 1017–1024, 2020, doi: 10.1590/1983-21252020v33n417rc.

M. Nei and W. H. Li, “Mathematical model for studying genetic variation in terms of restriction endonucleases,” in Proceedings of the National Academy of Sciences of the United States of America, 76(10), 1979, pp. 5269–5273.

A. Jain and D. K. Parihar, “Molecular marker based genetic diversity study of wild, cultivated and endangered species of Curcuma from Chhattisgarh region for in situ conservation,” Biocatal. Agric. Biotechnol., vol. 18, no. February, p. 101033, 2019, doi: 10.1016/j.bcab.2019.101033.

N. A. El-Tayeh, H. K. Galal, M. I. Soliman, and H. Zaki, “Association of morphological, ecological, and genetic diversity of aerva javanica populations growing in the eastern desert of Egypt,” Agronomy, vol. 10, no. 3, 2020, doi: 10.3390/agronomy10030402.

J. R. Mandel, C. Kendall Major, R. J. Bayer, and J. E. Moore, “Clonal diversity and spatial genetic structure in the long-lived herb, Prairie trillium,” PLoS One, vol. 14, no. 10, pp. 1–15, 2019, doi: 10.1371/journal.pone.0224123.

A. Das, M. Gaur, D. P. Barik, and E. Subudhi, “Genetic diversity analysis of 60 ginger germplasm core accessions using ISSR and SSR markers,” Plant Biosyst., vol. 151, no. 5, pp. 822–832, 2017, doi: 10.1080/11263504.2016.1211197.

P. Pandotra, A. P. Gupta, M. K. Husain, Gandhiram, and S. Gupta, “Evaluation of genetic diversity and chemical profile of ginger cultivars in north-western Himalayas,” Biochem. Syst. Ecol., vol. 48, pp. 281–287, 2013, doi: 10.1016/j.bse.2013.01.004.

S. Nayak, P. K. Naik, L. Acharya, A. K. Mukherjee, P. C. Panda, and P. Das, “Assessment of genetic diversity among 16 promising cultivars of ginger using cytological and molecular markers,” Zeitschrift fur Naturforsch. - Sect. C J. Biosci., vol. 60, no. 5–6, pp. 485–492, 2005, doi: 10.1515/znc-2005-5-618.

V. Antala, S. Narayanan, and N. Radadiya, “Effect of Different Pre-Sowing Treatments on Assessment of genetic diversity by using RAPD and ISSR markers in ginger ( Zingiber officinale Rosc .) genotypes,” Int. J. Chem. Stud., vol. 7, no. 4, pp. 363–372, 2019.

J. Kizhakkayil and B. Sasikumar, “Genetic diversity analysis of ginger (Zingiber officinale Rosc.) germplasm based on RAPD and ISSR markers,” Sci. Hortic. (Amsterdam)., vol. 125, no. 1, pp. 73–76, 2010, doi: 10.1016/j.scienta.2010.02.024.

M. Oktavioni et al., “Bioscience Research,” Biosci. Res., vol. 16(3), no. October, pp. 2897–2904, 2019.

N. A. Ismail, M. Y. Rafii, T. M. M. Mahmud, M. M. Hanafi, and G. Miah, “Genetic Diversity of Torch Ginger (Etlingera elatior) Germplasm Revealed by ISSR and SSR Markers,” Biomed Res. Int., vol. 2019, no. May, 2019, doi: 10.1155/2019/5904804.

S. Bhadra, D. Maity, and M. Bandyopadhyay, “Correlating karyomorphology and molecular marker analyses in turmeric: a case study,” J. Crop Improv., vol. 32, no. 5, pp. 657–680, 2018, doi: 10.1080/15427528.2018.1487354.

R. Huang, Y. Wang, K. Li, and Y. Q. Wang, “Genetic variation and population structure of clonal Zingiber zerumbet at a fine geographic scale: a comparison with two closely related selfing and outcrossing Zingiber species,” BMC Ecol. Evol., vol. 21, no. 1, pp. 1–13, 2021, doi: 10.1186/s12862-021-01853-2.

S. Wahyuni et al., “Genetic relationships among ginger accessions based on AFLP marker,” J. Bioteknol. Pertan., vol. 8, no. 2, pp. 60–68, 2003.

V. Kumar and B. K. Roy, “Population authentication of the traditional medicinal plant Cassia tora L. based on ISSR markers and FTIR analysis,” Sci. Rep., vol. 8, no. 1, pp. 1–11, 2018, doi: 10.1038/s41598-018-29114-1.

K. Ashraf, S. Sultan, and S. A. A. Shah, “Phychemistry, Phytochemical, Pharmacological and Molecular Study of Zingiber Officinale Roscoe: a Review,” Int. J. Pharm. Pharm. Sci., vol. 9, no. 10, p. 8, 2017, doi: 10.22159/ijpps.2017v9i11.19613.

A. District, “Genetic diversity encourages conservation of threatened ethno medicinally important plant species in Koz Abakhel District Swat , KP , Pakistan,” no. July, pp. 35–46, 2019.

H. Purnomo, F. Jaya, and S. B. Widjanarko, “The effects of type and time of thermal processing on ginger (Zingiber officinale Roscoe) rhizome antioxidant compounds and its quality,” Int. Food Res. J., vol. 17, no. 2, pp. 335–347, 2010.

S. Diehn et al., “Discrimination of grass pollen of different species by FTIR spectroscopy of individual pollen grains,” Anal. Bioanal. Chem., pp. 6459–6474, 2020, doi: 10.1007/s00216-020-02628-2.

B. J. Lee et al., “Discrimination and prediction of the origin of Chinese and Korean soybeans using Fourier transform infrared spectrometry (FT-IR) with multivariate statistical analysis,” PLoS One, vol. 13, no. 4, pp. 1–16, 2018, doi: 10.1371/journal.pone.0196315.

Y. Y. Wang, J. Q. Li, H. G. Liu, and Y. Z. Wang, “Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) combined with chemometrics methods for the classification of Lingzhi species,” Molecules, vol. 24, no. 12, 2019, doi: 10.3390/molecules24122210.

D. Gaikwad, S. K. Sachin, K. V Ashwini, S. Jadhav, and M. Gadhave, “Isolation and standardization of gingerol from ginger rhizome by using TLC, HPLC, and identification tests,” Pharma Innov. J., vol. 6, no. 2, pp. 179–182, 2017.

A. Ardila, I. Chairani, N. Nurdiati, and N. H. Fitriyah, “Fabrikasi Nanopartikel Herbal Dalam Tablet Effervescent Menggunakan Metode Solvent Emulsificassion Diffusion Kombinasi High Speed Homogenizer,” Pros. Semnastek, no. PROSIDING SEMNASTEK 2017, pp. 1–8, 2017.

L. Triyasmono, I. Munisa, K. Anwar, T. Wianto, and H. B. Santoso, “Identification and authentication of Eurycoma longifolia root extract from Zingiber officinale rhizome using FTIR spectroscopy and chemometrics,” Indones. J. Chemom. Pharm. Anal., pp. 1–9, 2020.

R. Kooke et al., “Epigenetic mapping of the Arabidopsis metabolome reveals mediators of the epigenotype-phenotype map,” Genome Res., vol. 29, no. 1, pp. 96–106, 2019, doi: 10.1101/gr.232371.117.



  • There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development