Genetic Stability Analysis Based on Inter-Simple Sequence Repeat And β-Carotene Content Analysis In Melon (Cucumis melo L. ‘GAMA Melon Parfum’)

Wiko Arif Wibowo, M. Fikri Al Rasyid, Syifa Evilia Maharani, Budi Setiadi Daryono


The ‘Gama Melon Parfum’ (GMP) melons is a variety of plant breeding resulted from the genetics and breeding laboratory of the Faculty of Biology, Universitas Gadjah Mada. GMP melons have a unique phenotypic character of a bitter taste and a strong aroma that has the potential to be used for cosmetics and medicine. Stability and genetic variation test are necessary to ensure the quality control of ‘GMP’ melons for industrial raw materials. The content of carotenoids is also important to reveal in utilizing metabolites compounds. Phenotypic character analysis was performed by comparing fruit grown conventionally and hydroponically grown on ‘GMP’ melons. The molecular observation method is genetic variation using the PCR-ISSR method with 5 primer ISSR and comparison with other varieties, namely ‘Hikapel’, ‘Sky Rocket’, and ‘PI371795’. The data analysis was used UPGMA method and genetic similarity estimated by using Jaccard Coefficient with MVSP 3.1 program. The method for observing β-carotene content is the UV-Vis spectrophotometric method. The results obtained showed that hydroponically grown ‘GMP’ melons had a relatively smaller size and faded fruit color. However, phenetically, ‘GMP’ melons grown both hydroponically and conventionally are in one cluster with a similarity level of 80.9%. Genetic analysis on ‘GMP’ melons and comparison melons showed a high level of polymorphism of 58.97%. While the results of β-carotene analysis on ‘GMP’ melons were 140,829 g/100 gr. It can be concluded that GMP melon has a stable genetic character. Changes that occur in GMP melons are caused by cultivation methods and environmental factors.


β-carotene; Cucumis melo L.; genetic stability; gama melon parfum; ISSR.

Full Text:



R. Yano, S. Nonaka, and H. Ezura, “Melonet-DB, a Grand RNA-Seq Gene Expression Atlas in Melon (Cucumis melo L.),” Plant Cell Physiol., vol. 59, no. 1, p. E4(1-15), 2018, doi: 10.1093/pcp/pcx193.

A. Moing et al., “Comparative metabolomics and molecular phylogenetics of melon (Cucumis melo, cucurbitaceae) biodiversity,” Metabolites, vol. 10, no. 3, 2020, doi: 10.3390/metabo10030121.

A. F. Yusuf, W. A. Wibowo, A. S. Subiastuti, and B. S. Daryono, “Morphological studies of stability and identity of melon (Cucumis melo L.) ‘Hikapel’ and comparative cultivars,” in AIP Conference Proceedings, Sep. 2020, vol. 2260, pp. 030006(1–8), doi: 10.1063/5.0017606.

W. A. Wibowo, M. I. Fatkhurohman, and B. S. Daryono, “Characterization and expression of cm-aat1 gene encoding alcohol acyl-transferase in melon fruit (Cucumis melo l.) ‘hikapel,’” Biodiversitas, vol. 21, no. 7, 2020, doi: 10.13057/biodiv/d210722.

H. S. Paris, Z. Amar, and E. Lev, “Medieval History of the Duda’im Melon (Cucumis melo, Cucurbitaceae),” Econ. Bot., vol. 66, no. 3, pp. 276–284, 2012, doi: 10.1007/s12231-012-9205-4.

W. A. Wibowo, S. D. Maryanto, and B. S. Daryono, “Phenotypic characters and identification CYPs (Cyclophilin) gene in Cucumis melo L. cv. Gama Melon Parfum,” Biodiversitas J. Biol. Divers., vol. 22, no. 6, pp. 3007–3014, May 2021, doi: 10.13057/biodiv/d220601.

U. H. A. Hasbullah, Supriyadi, and B. S. Daryono, “Aroma volatile compounds profile of melon (Cucumis melo L.) cv. Gama Melon Parfum,” IOP Conf. Ser. Earth Environ. Sci., vol. 292, pp. 012027(1–12), 2019, doi: 10.1088/1755-1315/292/1/012027.

S. Garg, S. C. Kaul, and R. Wadhwa, “Cucurbitacin B and cancer intervention: Chemistry, biology and mechanisms (review),” International Journal of Oncology, vol. 52, no. 1. pp. 19–37, 2018, doi: 10.3892/ijo.2017.4203.

A. P. Saputri, W. A. Wibowo, and B. S. Daryono, “Phenotypical characters and biochemical compound of cucurbitacin melon (Cucumis melo L. ‘Gama Melon Parfum’) resulted from breeding,” in AIP Conference Proceedings, Sep. 2020, vol. 2260, pp. 060006(1–7), doi: 10.1063/5.0017615.

U. B. Husnudin, B. S. Daryono, and Purnomo, “Genetic variability of Indonesian eggplant (Solanum melongena) based on ISSR markers,” Biodiversitas J. Biol. Divers., vol. 20, no. 10, pp. 3049–3055, 2019, doi: 10.13057/biodiv/d201038.

I. N. Rosyidi and B. S. Daryono, “Phenotypic characters and genetic variations of lurik peanuts (Arachis hypogaea l. var. lurikensis) with inter simple sequence repeat,” Biodiversitas, vol. 21, no. 2, pp. 629–635, 2020, doi: 10.13057/biodiv/d210227.

V. Portnoy et al., “Next-generation sequencing-based QTL mapping for unravelling causative genes associated with melon fruit quality traits,” Acta Hortic., vol. 1151, pp. 9–16, 2017, doi: 10.17660/ActaHortic.2017.1151.3.

M. C. Kyriacou, D. I. Leskovar, G. Colla, and Y. Rouphael, “Watermelon and melon fruit quality: The genotypic and agro-environmental factors implicated,” Sci. Hortic. (Amsterdam)., vol. 234, pp. 393–408, 2018, doi: 10.1016/j.scienta.2018.01.032.

B. S. Daryono, A. S. Subiastuti, A. Fatmadanni, and D. Sartika, “Phenotypic and genetic stability of new indonesian melon cultivar (Cucumis melo L. ‘Melonia’) based on ISSR markers,” Biodiversitas, vol. 20, no. 4, pp. 1069–1075, 2019, doi: 10.13057/biodiv/d200419.

J. Kubola and S. Siriamornpun, “Phytochemicals and antioxidant activity of different fruit fractions (peel, pulp, aril and seed) of Thai gac (Momordica cochinchinensis Spreng),” Food Chem., vol. 127, pp. 1138–1145, 2011, doi: 10.1016/j.foodchem.2011.01.115.

A. Kumar and R. K. Lal, “The consequence of genotype × environment interaction on high essential oil yield and its composition in clove basil (Ocimum gratissimum L.),” Acta Ecol. Sin., Jun. 2021, doi: 10.1016/j.chnaes.2021.06.002.

H. Fazaeli, H. A. Golmohammadi, S. N. Tabatabayee, and M. Asghari-Tabrizi, “Productivity and nutritive value of barley green fodder yield in hydroponic system,” World Appl. Sci. J., vol. 16, no. 4, pp. 531–539, 2012.

Y. L. Chen, V. M. Dunbabin, A. J. Diggle, K. H. M. Siddique, and Z. Rengel, “Development of a novel semi-hydroponic phenotyping system for studying root architecture,” Funct. Plant Biol., vol. 38, no. 5, pp. 355–363, 2011, doi: 10.1071/FP10241.

B. Onwuka and B. Mang, “Effects of Soil Temperature on Some Soil Properties and Plant Growth,” Adv. Plants Agric. Res., vol. 8, no. 1, pp. 34–37, 2018, doi: 10.15406/apar.2018.08.00288.

C. Zanetti, M. Vennetier, P. Mériaux, and M. Provansal, “Plasticity of tree root system structure in contrasting soil materials and environmental conditions,” Plant Soil, vol. 387, pp. 21–35, 2015, doi: 10.1007/s11104-014-2253-z.

F. S. Chapin, A. J. Bloom, C. B. Field, and R. H. Waring, “Plant Responses to Multiple Environmental Factors,” Bioscience, vol. 37, no. 1, pp. 49–57, 1987, doi: 10.2307/1310177.

Z. I. Navia, A. B. Suwardi, T. Harmawan, Syamsuardi, and E. Mukhtar, “The diversity and contribution of indigenous edible fruit plants to the rural community in the Gayo highlands, Indonesia,” J. Agric. Rural Dev. Trop. Subtrop., vol. 121, no. 1, pp. 89–98, 2020, doi: 10.17170/kobra-202004061145.

B. S. Daryono and S. D. Maryanto, Keanekaragaman dan Potensi Sumber Daya Genetik Melon. Yogyakarta: Gadjah Mada University Press, 2017.

I. N. A. Martiwi, L. H. Nugroho, B. S. Daryono, and R. Susandarini, “Genotypic variability and relationships of sorghum bicolor accessions from Java island, Indonesia based on irap markers,” Biodiversitas, vol. 21, no. 12, pp. 5637–5643, 2020, doi: 10.13057/biodiv/d211220.

A. F. Irsyad, R. Rindyastuti, T. Yulistyarini, A. S. Darmayanti, and B. S. Daryono, “Genetic variation of agarwood producing tree (Gyrinops versteegii) from Pongkor, Manggarai District, flores Island, Indonesia using ISSR molecular markers,” Biodiversitas, vol. 21, no. 2, pp. 485–491, 2020, doi: 10.13057/biodiv/d210208.

S. Singh, P. Singh, and J. Singh, “Transposon-based genetic diversity assessment in wild and cultivated barley,” Crop J., vol. 5, no. 4, pp. 296–304, 2017, doi: 10.1016/j.cj.2017.01.003.

L. Oktavianingsih, E. Suharyanto, B. S. Daryono, and Purnomo, “Morphological characters variability of taro (Colocasia spp.) in Kalimantan, Indonesia based on phenetic analysis approach,” Sabrao J. Breed. Genet., vol. 51, no. 1, pp. 37–56, 2019.

M. Sungkawati, L. Hidayati, B. S. Daryono, and Purnomo, “Phenetic analysis of Curcuma spp. in Yogyakarta, Indonesia based on morphological and anatomical characters,” Biodiversitas, vol. 20, no. 8, pp. 2340–2347, 2019, doi: 10.13057/biodiv/d200832.

U. B. Husnudin, Suharyanto, B. S. Daryono, and P. Purnomo, “Variation and non-formal classification of indonesian eggplant (Solanum melongena l.) accessions based on macro and micro-morphological characters,” Agrivita, vol. 41, no. 3, pp. 544–560, 2019, doi: 10.17503/agrivita.v41i3.2039.

C. Luo, X. H. He, H. Chen, S. J. Ou, and M. P. Gao, “Analysis of diversity and relationships among mango cultivars using Start Codon Targeted (SCoT) markers,” Biochem. Syst. Ecol., vol. 38, no. 6, pp. 1176–1184, 2010, doi: 10.1016/j.bse.2010.11.004.

E. Zulaika, L. Sembiring, and A. Soegianto, “Characterization and Identification Of Mercury-resistant Bacteria From Kalimas River Surabaya-Indonesia By Numerical Phenetic Taxonomy,” J. Basic. Appl. Sci. Res, vol. 2, no. 7, pp. 7263–7269, 2012, [Online]. Available:

M. K. Fleshman et al., “Carotene and novel apocarotenoid concentrations in orange-fleshed cucumis melo melons: Determinations of β-carotene bioaccessibility and bioavailability,” J. Agric. Food Chem., vol. 59, no. 9, pp. 4448–4454, 2011, doi: 10.1021/jf200416a.

B. S. Daryono, S. D. Maryanto, S. Nissa, and G. R. Aristya, “Analisis Kandungan Vitamin Pada Melon (Cucumis melo L.) Kultivar Melodi Gama 1 dan Melon Komersial,” Biog. J. Ilm. Biol., vol. 4, no. 1, pp. 1–9, 2016, doi: 10.24252/bio.v4i1.1113.



  • There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development