Software Traceability in Agile Development Using Topic Modeling
Abstract
Keywords
Full Text:
PDFReferences
N. N. Hidayati and S. Rochimah, "Requirements traceability for detecting defects in agile software development," EECCIS 2020 - 2020 10th Electr. Power, Electron. Commun. Control. Informatics Semin., pp. 248–253, 2020, doi: 10.1109/EECCIS49483.2020.9263420.
B. Wang, R. Peng, Y. Li, H. Lai, and Z. Wang, "Requirements traceability technologies and technology transfer decision support: A systematic review," J. Syst. Softw., vol. 146, pp. 59–79, 2018, doi: 10.1016/j.jss.2018.09.001.
T. Vale, E. S. de Almeida, V. Alves, U. Kulesza, N. Niu, and R. de Lima, "Software product lines traceability: A systematic mapping study," Inf. Softw. Technol., vol. 84, pp. 1–18, 2017, doi: 10.1016/j.infsof.2016.12.004.
C. Mills, J. Escobar-Avila, and S. Haiduc, "Automatic traceability maintenance via machine learning classification," Proc. - 2018 IEEE Int. Conf. Softw. Maint. Evol. ICSME 2018, pp. 369–380, 2018, doi: 10.1109/ICSME.2018.00045.
D. Nanang, P. L. Penelusuran, and P. L. Penelusuran, “Pembangunan Link Penelusuran Kebutuhan Fungsional Dan Method Pada Kode Sumber Dengan Metode Pengambilan Informasi,” ELTEK, vol. 16, pp. 151–165, 2018, [Online]. Available: https://doi.org/10.33795/eltek.v16i2.106.
A. S. Ahmadiyah, R. Sarno, and F. Revindasari, "Adopted topic modeling for business process and software component conformity checking," Telkomnika (Telecommunication Comput. Electron. Control., vol. 18, no. 6, pp. 2939–2947, 2020, doi: 10.12928/TELKOMNIKA.v18i6.13381.
S. Rani and M. Kumar, "Topic modeling and its applications in materials science and engineering," Mater. Today Proc., vol. 45, pp. 5591–5596, 2021, doi: 10.1016/j.matpr.2021.02.313.
J. Zhao, Q. P. Feng, P. Wu, J. L. Warner, J. C. Denny, and W. Q. Wei, "Using topic modeling via non-negative matrix factorization to identify relationships between genetic variants and disease phenotypes: A case study of Lipoprotein(a) (LPA)," PLoS One, vol. 14, no. 2, pp. 1–15, 2019, doi: 10.1371/journal.pone.0212112.
R. Albalawi, T. H. Yeap, and M. Benyoucef, "Using Topic Modeling Methods for Short-Text Data: A Comparative Analysis," Front. Artif. Intell., vol. 3, no. July, pp. 1–14, 2020, doi: 10.3389/frai.2020.00042.
Y. Chen, H. Zhang, R. Liu, Z. Ye, and J. Lin, "Experimental explorations on short text topic mining between LDA and NMF based Schemes," Knowledge-Based Syst., vol. 163, pp. 1–13, 2019, doi: 10.1016/j.knosys.2018.08.011.
Q. Fu, Y. Zhuang, J. Gu, Y. Zhu, and X. Guo, "Agreeing to Disagree: Choosing Among Eight Topic-Modeling Methods," Big Data Res., vol. 23, p. 100173, 2021, doi: 10.1016/j.bdr.2020.100173.
H. Kaiya, A. Hazeyama, S. Ogata, T. Okubo, N. Yoshioka, and H. Washizaki, "Towards a knowledge base for software developers to choose suitable traceability techniques," Procedia Comput. Sci., vol. 159, pp. 1075–1084, 2019, doi: 10.1016/j.procs.2019.09.276.
A. Guo and T. Yang, "Research and improvement of feature words weight based on TFIDF algorithm," Proc. 2016 IEEE Inf. Technol. Networking, Electron. Autom. Control Conf. ITNEC 2016, pp. 415–419, 2016, doi: 10.1109/ITNEC.2016.7560393.
H. Suhartoyo and S. Rochimah, “Membangun Hubungan Kerunutan Artifak Pada Lingkungan Pengembangan Cepat,” SYSTEMIC, vol. 02, no. 01, pp. 1–17, 2016.
P. M. Prihatini, I. Putra, I. Giriantari, and M. Sudarma, "Indonesian text feature extraction using gibbs sampling and mean variational inference latent dirichlet allocation," QiR 2017 - 2017 15th Int. Conf. Qual. Res. Int. Symp. Electr. Comput. Eng., vol. 2017-Decem, pp. 40–44, 2017, doi: 10.1109/QIR.2017.8168448.
P. Suri and N. R. Roy, "Comparison between LDA & NMF for event-detection from large text stream data," 3rd IEEE Int. Conf. , pp. 1–5, 2017, doi: 10.1109/CIACT.2017.7977281.
T. D. Hien, D. Van Tuan, P. Van At, and L. H. Son, "Novel algorithm for non-negative matrix factorization," New Math. Nat. Comput., vol. 11, no. 2, pp. 121–133, 2015, doi: 10.1142/S1793005715400013.
H. Dalianis and H. Dalianis, "Evaluation Metrics and Evaluation," Clin. Text Min., no. 1967, pp. 45–53, 2018, doi: 10.1007/978-3-319-78503-5_6.
S. Vanbelle, "Comparing dependent kappa coefficients obtained on multilevel data," Biometrical J., vol. 59, no. 5, pp. 1016–1034, 2017, doi: 10.1002/bimj.201600093.
E. Bagli and G. Visani, "Metrics for Multi-Class Classification : an Overview," arXiv, vol. abs/2008.0, pp. 1–17, 2020.
S. A. Curiskis, B. Drake, T. R. Osborn, and P. J. Kennedy, "An evaluation of document clustering and topic modelling in two online social networks : Twitter and Reddit," Inf. Process. Manag., vol. 57, no. 2, p. 102034, 2020, doi: 10.1016/j.ipm.2019.04.002.
D. Braun and M. Langen, "Evaluating Natural Language Understanding Services for Conversational Question Answering Systems," Proc. 18th Annu. {SIG}dial Meet. Discourse Dialogue, no. August, pp. 174–185, 2017.
M. Belford, B. Mac Namee, and D. Greene, "Stability of topic modeling via matrix factorization," Expert Syst. Appl., vol. 91, pp. 159–169, 2018, doi: 10.1016/j.eswa.2017.08.047.
R. M. Suleman and I. Korkontzelos, "Extending latent semantic analysis to manage its syntactic blindness," Expert Syst. Appl., vol. 165, no. January 2020, p. 114130, 2021, doi: 10.1016/j.eswa.2020.114130.
A Amalia et al, "Automated Bahasa Indonesia essay evaluation with latent semantic analysis Automated Bahasa Indonesia essay evaluation with latent semantic analysis," J. Phys. Conf. Ser. 1235 012100, pp. 0–8, 2019, doi: 10.1088/1742-6596/1235/1/012100.
J. A. Lossio-Ventura, S. Gonzales, J. Morzan, H. Alatrista-Salas, T. Hernandez-Boussard, and J. Bian, "Evaluation of clustering and topic modeling methods over health-related tweets and emails," Artif. Intell. Med., vol. 117, no. March, p. 102096, 2021, doi: 10.1016/j.artmed.2021.102096.
DOI: http://dx.doi.org/10.18517/ijaseit.12.4.15195
Refbacks
- There are currently no refbacks.
Published by INSIGHT - Indonesian Society for Knowledge and Human Development