### Artificial Pancreas: Avoiding Hyperglycemia and Hypoglycemia for Type One Diabetes

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

N. Magdelaine et al., “Hypoglycaemia-free artificial pancreas project,” IET Syst. Biol., vol. 14, no. 1, pp. 16–23, 2020, doi: 10.1049/iet-syb.2018.5069.

N. Magdelaine et al., “A long-term model of the glucose-insulin dynamics of type 1 diabetes,” IEEE Trans. Biomed. Eng., vol. 62, no. 6, pp. 1546–1552, 2015, doi: 10.1109/TBME.2015.2394239.

M. J. Schoelwer et al., “Predictors of Time-in-Range (70–180 mg/dL) Achieved Using a Closed-Loop Control System,” Diabetes Technol. Ther., vol. 23, no. 7, pp. 1–7, 2021, doi: 10.1089/dia.2020.0646.

A. Nath, R. Dey, and C. Aguilar-Avelar, “Observer based nonlinear control design for glucose regulation in type 1 diabetic patients: An LMI approach,” Biomed. Signal Process. Control, vol. 47, pp. 7–15, 2019, doi: 10.1016/j.bspc.2018.07.020.

K. Menani, T. Mohammadridha, N. Magdelaine, M. Abdelaziz, and C. H. Moog, “Positive sliding mode control for blood glucose regulation,” Int. J. Syst. Sci., vol. 48, no. 15, pp. 3267–3278, 2017, doi: 10.1080/00207721.2017.1381893.

A. Nath and R. Dey, “Robust observer-based control for plasma glucose regulation in type 1 diabetes patient using attractive ellipsoid method,” IET Syst. Biol., vol. 13, no. 2, pp. 84–91, 2019.

P. Abuin, P. S. Rivadeneira, A. Ferramosca, and A. H. González, “Artificial pancreas under stable pulsatile MPC: Improving the closed-loop performance,” J. Process Control, vol. 92, pp. 246–260, 2020, doi: 10.1016/j.jprocont.2020.06.009.

Z. Cao, R. Gondhalekar, E. Dassau, and F. J. D. Iii, “Extremum Seeking Control for Personalized Zone Adaptation in Model Predictive Control for Type 1 Diabetes,” vol. 9294, no. c, pp. 1–12, 2017, doi: 10.1109/TBME.2017.2783238.

B. K. Abd-Al Amear, S. M. Raafat, and A. Al-Khazraji, “Glucose controller for artificial pancreas,” 2019 Int. Conf. Innov. Intell. Informatics, Comput. Technol. 3ICT 2019, pp. 1–6, 2019, doi: 10.1109/3ICT.2019.8910295.

A. El Fathi, V. Gingras, and B. Boulet, “The artificial pancreas and meal control: an overview of postprandial glucose regulation in type 1 diabetes,” IEEE Control Syst. Mag., vol. 38, no. February, pp. 67–85, 2018.

B. Moreano and J. Pumisacho, “Comparison between PID-Fuzzy and Numerical Methods based on linear Algebra controllers for Glucose control in Type 1 Diabetes treatment.,” 2019 Int. Conf. Inf. Syst. Comput. Sci., pp. 156–162, 2019, doi: 10.1109/INCISCOS49368.2019.00033.

A. K. Patra, A. K. Mishra, and P. K. Rout, “Backstepping Model Predictive Controller for Blood Glucose Regulation in Type-I Diabetes Patient,” IETE J. Res., vol. 66, no. 3, pp. 326–340, 2020, doi: 10.1080/03772063.2018.1493404.

A. H. González, P. S. Rivadeneira, A. Ferramosca, N. Magdelaine, and C. H. Moog, “Stable impulsive zone model predictive control for type 1 diabetic patients based on a long-term model,” Optim. Control Appl. Methods, vol. 41, no. 6, pp. 2115–2136, 2020, doi: 10.1002/oca.2647.

C. Cobelli et al., “Advancing Our Understanding of the Glucose System via Modeling: A Perspective,” IEEE Trans. Biomed. Eng., vol. 61, no. 5, pp. 1577–1592, 2014.

T. Mohammadridha, P. S. Rivadeneira, J. E. Sereno, M. Cardelli, and C. H. Moog, “Description of the Positively Invariant Sets of a Type 1 Diabetic Patient Model,” 17th CLCA Lat. Am. Conf. Autom. Control., 2016.

T. MohammadRidha, P. S. Rivadeneira, N. Magdelaine, M. Cardelli, and C. H. Moog, “Positively invariant sets of a T1DM model: Hypoglycemia prediction and avoidance,” J. Franklin Inst., vol. 356, no. 11, pp. 5652–5674, 2019, doi: 10.1016/j.jfranklin.2019.03.022.

L. F. S. Rinaldi, Positive linear systems Theory and Application, vol. 50. 2011.

T. Mohammadridha, P. S. Rivadeneira, M. Cardelli, N. Magdelaine, and C. H. Moog, “Towards hypoglycemia prediction and avoidance for Type 1 Diabetic patients,” 2017 IEEE 56th Annu. Conf. Decis. Control. CDC 2017, doi: 10.1109/CDC.2017.8264264.

J. E. Sereno, M. A. Caicedo, and P. S. Rivadeneira, “Artificial pancreas: Glycemic control strategies for avoiding hypoglycemia,” DYNA, vol. 85, no. 207, pp. 198–207, 2018, doi: 10.15446/dyna.v85n207.71535.

S. Ahmed, Y. K. Al-nadawi, M. H. Mshari, and M. M. Salih, “Electronic Throttle Valve Control Design Based on Sliding Mode Perturbation Estimator †,” IJCCCE, vol. 15, no. 2, pp. 65–74, 2015.

J. S. V. I. Utkin, J. Guldner, Sliding Mode Control in Electro-Mechanical Systems. London, Taylor & Francis Group. 2009.

A. Falah, A. J. Humaidi, A. Al-dujaili, and I. K. Ibraheem, “Robust Super-Twisting Sliding Control of PAM- actuated Manipulator Based on Perturbation Observer Robust Super-Twisting Sliding Control of PAM- actuated Manipulator Based on Perturbation Observer,” Cogent Eng., vol. 7, no. 1, pp. 1–30, 2021, doi: 10.1080/23311916.2020.1858393.

S. A. Al-samarraie, “A Chattering Free Sliding Mode Observer with Application to DC Motor Speed Control,” 2018 Third Sci. Conf. Electr. Eng., pp. 259–264, 2018.

C. Clason, A. Rund, and K. Kunisch, “Systems & Control Letters Nonconvex penalization of switching control of partial differential equations,” Syst. Control Lett., vol. 106, pp. 1–8, 2017, doi: 10.1016/j.sysconle.2017.05.006.

M. I. Tomera, “Hybrid Switching Controller Design for the Maneuvering and Transit of a Training Ship,” Int. J. Appl. Math. Comput. Sci., vol. 27, no. 1, pp. 63–77, 2017, doi: 10.1515/amcs-2017-0005.

E. D. Lehmann and T. Deutsch, “A physiological model of glucose-insulin interaction in type 1 diabetes mellitus,” J. Biomed. Eng., vol. 14, no. 3, pp. 235–242, 1992, doi: 10.1016/0141-5425(92)90058-S.

S. F. Fadhel and S. M. Raafat, “H ∞ loop Shaping Robust Postprandial Glucose Control for Type 1 Diabetes,” Eng. Technol. J., vol. 39, no. 02, pp. 268–279, 2021.

DOI: http://dx.doi.org/10.18517/ijaseit.12.1.15106

### Refbacks

Published by INSIGHT - Indonesian Society for Knowledge and Human Development