Evaluation of Antibacterial Activity, Total Phenolic and Flavonoid Contents of Extracts of Endophytic Fungi Associated with Tinospora crispa (L.) Hook. f. & Thomson

Ahmad Fathoni, Sumi Hudiyono, Emil Budianto, Antonius Herry Cahyana, Muhammad Ilyas, Andria Agusta

Abstract


In the preliminary study, endophytic fungi associated with Tinospora crispa have been reported as antibacterial that assayed by TLC-bioautography. While more comprehensive studies for antibacterial activity using microdilution, total phenolic, flavonoid contents, and their relationship of extracts of fungal endophytes from this plant have never been investigated yet. This research aims to assess antibacterial activity, total phenolic, total flavonoid, and their relationship of fungal extracts associated with T. crispa. Based on morphological identification, this study revealed that endophytic Phomopsis sp. is the most isolated fungi (35% of fungal isolate composition). Based on the microdilution method, morphological and molecular identification showed that the fungal extracts performing a vigorous antibacterial activity (MIC value: <64 μg.ml-1) against S. aureus InaCC-B4 were three extracts i.e., Colletotrichum brevisporum TcDn1Bd-01, and Diaporthe passifloricola TcBt2Bo-03, and Alternaria alstroemeriae TcTd2Bo-07. While one extracts, Phomopsis sp. TcBt1Bo-06, have potent bacterial growth inhibition toward E. coli InaCC-B5 (MIC value: <64 μg.ml-1). The highest of both total phenolic content (TPC) and total flavonoid content (TFC) values of the extract is A. alstroemeriae TcTd2Bo-07 which are 166.210 ± 0.000 GAE/extract (mg/g) and 339.991 ± 0.136 QE/extract (mg/g), respectively. There is a negative and significantly very high Pearson’s correlation TPC values toward the MIC value of antibacterial against S. aureus and E. coli (r = -0.671 and -0.969, respectively, P<0.01). The results suggest that the extracts of endophytic fungi can be used as antibacterial sources. Evaluation of chemical structure and antibacterial activity of pure compound need to be solved.

Keywords


Antibacterial; microdilution method; TPC; TFC; endophytic fungi; Tinospora crispa.

Full Text:

PDF

References


N. Rai et al., “Plant associated fungal endophytes as a source of natural bioactive compounds,†Mycology, pp. 1–21, Jan. 2021, doi: 10.1080/21501203.2020.1870579.

G. Strobel, “The Emergence of Endophytic Microbes and Their Biological Promise,†J. fungi, vol. 4, no. 2, p. 57, May 2018, doi: 10.3390/jof4020057.

G. Caruso, M. Abdelhamid, A. Kalisz, and A. Sekara, “Linking Endophytic Fungi to Medicinal Plants Therapeutic Activity. A Case Study on Asteraceae,†Agriculture, vol. 10, no. 7, p. 286, 2020, doi: 10.3390/agriculture10070286.

B. S. Adeleke and O. O. Babalola, “Pharmacological potential of fungal endophytes associated with medicinal plants: A review,†J. Fungi, vol. 7, no. 2, pp. 1–16, 2021, doi: 10.3390/jof7020147.

A. E. Fadiji and O. O. Babalola, “Elucidating Mechanisms of Endophytes Used in Plant Protection and Other Bioactivities With Multifunctional Prospects,†Front. Bioeng. Biotechnol., vol. 8, no. May, pp. 1–20, 2020, doi: 10.3389/fbioe.2020.00467.

K. L. Rana et al., “Endophytic microbes: biodiversity, plant growth-promoting mechanisms and potential applications for agricultural sustainability,†Antonie Van Leeuwenhoek, vol. 113, no. 8, pp. 1075–1107, 2020, doi: 10.1007/s10482-020-01429-y.

R. Lata, S. Chowdhury, S. Gond, and Jj. White, “Induction of abiotic stress tolerance in plants by endophytic microbes,†Lett Appl Microbiol, vol. 66, pp. 268–276, 2018.

B. U. Furtado, S. Szymańska, and K. Hrynkiewicz, “A window into fungal endophytism in Salicornia europaea: deciphering fungal characteristics as plant growth promoting agents,†Plant Soil, vol. 445, no. 1, pp. 577–594, 2019, doi: 10.1007/s11104-019-04315-3.

A. Manzotti et al., “Insights into the community structure and lifestyle of the fungal root endophytes of tomato by combining amplicon sequencing and isolation approaches with phytohormone profiling,†FEMS Microbiol. Ecol., vol. 96, no. 5, May 2020, doi: 10.1093/femsec/fiaa052.

C. An, S. Ma, X. Shi, W. Xue, C. Liu, and H. Ding, “Isolation, diversity, and antimicrobial activity of fungal endophytes from Rohdea chinensis (Baker) N.Tanaka (synonym Tupistra chinensis Baker) of Qinling Mountains, China,†PeerJ, vol. 8, p. e9342, 2020.

Praptiwi, Y. Jamal, A. Fathoni, A. Nurkanto, and A. Agusta, “3-Acetyl-2,5,7-Trihydroxy-1,4-Naphtalenedione, An Antimicrobial Metabolite from The Culture of Endophytic Fungus Coelomycetes TCBP4 from Tinospora crispa,†Media Heal. Res. Dev., vol. 23, no. 3, pp. 95–101, 2013, doi: 10.22435/mpk.v23i3.3278.95-101.

Elfita, Munawar, Muharni, and M. Sudrajat, “Identification of New Lactone Derivatives Isolated from Trichoderma sp., An Endophytic Fungus of Brotowali (Tinaspora crispa),†HAYATI J. Biosci., vol. 21, no. 1, pp. 15–20, 2014, doi: 10.4308/hjb.21.1.15.

W. Ahmad, I. Jantan, and S. N. A. Bukhari, “Tinospora crispa (L.) Hook. f. & Thomson: A review of its ethnobotanical, phytochemical, and pharmacological aspects,†Front. Pharmacol., vol. 7, pp. 1–19, 2016, doi: 10.3389/fphar.2016.00059.

D. Wulansari, Y. Jamal, P. Praptiwi, and A. Agusta, “Pachybasin, a Major Metabolite from Culture Broth of Endophytic Coelomyceteous AFKR-18 Fungus isolated from a Yellow Moonsheed Plant, Arcangelisia flava (L.) Merr.,†HAYATI J. Biosci., vol. 21, no. 2, pp. 95–100, 2014, doi: 10.4308/hjb.21.2.95.

N. Kapoor and S. Saxena, “Endophytic fungi of Tinospora cordifolia with anti-gout properties,†3 Biotech, vol. 8, no. 6, p. 264, 2018.

A. Fathoni, S. Hudiyono, E. Budianto, A. H. Cahyana, and A. Agusta, “ Metabolite Detection and Antibacterial Activity of Fungal Endophytic Extracts Isolated from Brotowali ( Tinospora crispa ) Plants using TLC-Bioautography Assay ,†IOP Conf. Ser. Mater. Sci. Eng., vol. 1011, p. 012041, 2021, doi: 10.1088/1757-899x/1011/1/012041.

Praptiwi, M. Raunsai, D. Wulansari, A. Fathoni, and A. Agusta, “Antibacterial and antioxidant activities of endophytic fungi extracts of medicinal plants from Central Sulawesi,†J. Appl. Pharm. Sci., vol. 8, no. 8, pp. 69–74, 2018, doi: 10.7324/JAPS.2018.8811.

M. Ilyas, Praptiwi, D. Wulansari, A. Fathoni, and A. Agusta, “An assemblages of fungal endophytes isolated from medicinal plants collected from Toba and Samosir, North Sumatra,†IOP Conf. Ser. Earth Environ. Sci., vol. 308, no. 1, 2019, doi: 10.1088/1755-1315/308/1/012070.

G. Pessini, B. Dias-Filho, C. Nakamura, and D. Cortez, “Antibacterial activity of extracts and neolignans of Piper regnellii (Miq.) C.DC. var pallescens (C.DC),†Yunck Mem I Oswalso Cruz, vol. 98, pp. 1115–1120, 2003.

J. Ismail, M. Runtuwene, and F. Fatimah, “Penentuan total fenolik dan uji aktivitas antioksidan pada biji dan kulit buah pinang Yaki (Areca vestiaria Giseke),†J. Ilm. Sains, vol. 12, no. 2, pp. 84–88, 2012.

Y. Zou, Y. Lu, and D. Wei, “Antioxidant activity of a flavonoid-rich extract of Hypericum perforatum L. in vitro,†J. Agric. Food Chem., vol. 52, no. 16, pp. 5032–5039, 2004, doi: 10.1021/jf049571r.

T. J. White, T. D. Bruns, S. B. Lee, and J. W. Taylor, “Amplification and direct sequencing of fungal RNA genes for phylogenetics,†in PCR protocols, M. A. Innis, D. H. Gelfand, J. J. Sninsky, and T. J. White, Eds. San Diego: Academic Press, Inc., 1990.

T. P. Napitupulu, M. Ilyas, A. Kanti, and I. M. Sudiana, “In vitro evaluation of Trichoderma harzianum strains for the control of Fusarium oxysporum f.sp. cubense,†Plant Pathol. Quar., vol. 9, no. 1, pp. 152–159, 2019.

A. Hiraishi, Y. Kamagata, and N. Nakamura, “Polymerase chain reaction amplification and restriction fragment length polymorphism analysis of 16S rRNA genes from methanogens.,†Journals Ferment. Bioeng., vol. 79, pp. 523–529, 1995.

T. Hall, “BioEdit.†.

C. Chepkirui and M. Stadler, “The genus Diaporthe: a rich source of diverse and bioactive metabolites,†Mycol Prog., vol. 16, pp. 477–494, 2017.

T. S. Murali, T. S. Suryanarayanan, and R. Geeta, “Endophytic Phomopsis species: Host range and implications for diversity estimates,†Can. J. Microbiol., vol. 52, no. 7, pp. 673–680, 2006, doi: 10.1139/W06-020.

J. L. Li, X. Sun, Y. Zheng, P. P. Lü, Y. L. Wang, and L. D. Guo, “Diversity and community of culturable endophytic fungi from stems and roots of desert halophytes in northwest China,†MycoKeys, vol. 62, pp. 75–95, 2020, doi: 10.3897/mycokeys.62.38923.

K. Fang et al., “Tissue-Specific and Geographical Variation in Endophytic Fungi of Ageratina adenophora and Fungal Associations With the Environment,†Front. Microbiol., vol. 10, p. 2919, Dec. 2019, doi: 10.3389/fmicb.2019.02919.

C. Santos, B. N. S. da Silva, A. F. T. A. F. E Ferreira, C. Santos, N. Lima, and J. L. da S. Bentes, “Fungal endophytic community associated with guarana (Paullinia cupana var. sorbilis): Diversity driver by genotypes in the centre of origin,†J. Fungi, vol. 6, no. 3, pp. 1–20, 2020, doi: 10.3390/jof6030123.

F. Silva et al., “Diversity of cultivable fungal endophytes in Paullinia cupana (Mart.) Ducke and bioactivity of their secondary metabolites,†PLoS One., vol. 13, no. 4, p. e0195874, 2018.

M. J. Guevara-Araya, C. Vilo, A. Urzúa, and M. González-Teuber, “Differences in community composition of endophytic fungi between above- and below-ground tissues of Aristolochia chilensis in an arid ecosystem,†Rev. Chil. Hist. Nat., vol. 93, no. 1, p. 3, 2020, doi: 10.1186/s40693-020-00091-y.

H. R. Qu et al., “Antibacterial bisabolane sesquiterpenoids and isocoumarin derivatives from the endophytic fungus Phomopsis prunorum,†Phytochem. Lett., vol. 37, pp. 1–4, 2020, doi: https://doi.org/10.1016/j.phytol.2020.03.003.

T. C. Xu et al., “Bioactive secondary metabolites of the genus diaporthe and anamorph phomopsis from terrestrial and marine habitats and endophytes: 2010–2019,†Microorganisms, vol. 9, no. 2, pp. 1–49, 2021, doi: 10.3390/microorganisms9020217.

Praptiwi, K. Palupi, A. Fathoni, D. Wulansari, M. Ilyas, and A. Agusta, “Evaluation of antibacterial and antioxidant activity of extracts of endophytic fungi isolated from Indonesian Zingiberaceous plants,†Nusant. Biosci., vol. 8, no. 2, pp. 306–311, 2016, doi: 10.13057/nusbiosci/n080228.

J. Tian et al., “Dibenzo-α-pyrones from the endophytic fungus Alternaria sp. Samif01: isolation, structure elucidation, and their antibacterial and antioxidant activities,†Nat Prod Res, vol. 31, no. 4, pp. 387–396, 2017.

A. A. Al Mousa, H. Mohamed, A. M. A. Hassane, and N. F. Abo-Dahab, “Antimicrobial and cytotoxic potential of an endophytic fungus Alternaria tenuissima AUMC14342 isolated from Artemisia judaica L. growing in Saudi Arabia,†J. King Saud Univ. - Sci., vol. 33, no. 5, p. 101462, 2021, doi: https://doi.org/10.1016/j.jksus.2021.101462.

J. T. Wang et al., “Chemical constituents from plant endophytic fungus Alternaria alternata,†Nat Prod Res, vol. 35, no. 7, pp. 1199–1206, 2021.

L. A. El-Kassem, U. W. Hawas, S. El-Souda, E. F. Ahmed, W. El-Khateeb, and W. Fayad, “Anti-HCV protease potential of endophytic fungi and cytotoxic activity,†Biocatal Agric Biotechnol, vol. 19, p. 101170, 2019, doi: 10.1016/j.bcab.2019.101170.

Y. N. Shi et al., “(±)-Alternarlactones A and B, Two Antiparasitic Alternariol-like Dimers from the Fungus Alternaria alternata P1210 Isolated from the Halophyte Salicornia sp,†J Org Chem, vol. 84, no. 17, pp. 11203–11209, 20219.

R. Song et al., “The study of metabolites from fermentation culture of Alternaria oxytropis,†BMC Microbiol, vol. 19, no. 1, p. 35, 2019.

N. Ranganathan and G. Mahalingam, “Secondary metabolite as therapeutic agent from endophytic fungi Alternaria longipes strain VITN14G of mangrove plant Avicennia officinalis,†J Cell Biochem, vol. 120, no. 3, pp. 4021–4031, 2019.

I. Górniak, R. Bartoszewski, and J. Króliczewski, “Comprehensive review of antimicrobial activities of plant flavonoids,†Phytochem. Rev., vol. 18, no. 1, pp. 241–272, 2019, doi: 10.1007/s11101-018-9591-z.

S. M. Mandal, R. O. Dias, and O. L. Franco, “Phenolic Compounds in Antimicrobial Therapy,†J. Med. Food, vol. 20, no. 10, pp. 1031–1038, 2017, doi: 10.1089/jmf.2017.0017.

F. Farhadi, B. Khameneh, M. Iranshahi, and M. Iranshahy, “Antibacterial activity of flavonoids and their structure–activity relationship: An update review,†Phyther. Res., vol. 33, no. 1, pp. 13–40, 2019, doi: 10.1002/ptr.6208.

L. Bouarab-Chibane et al., “Antibacterial Properties of Polyphenols: Characterization and QSAR (Quantitative Structure-Activity Relationship) Models,†Front. Microbiol., vol. 10, p. 829, Apr. 2019, doi: 10.3389/fmicb.2019.00829.

V. Kuete, “Potential of Cameroonian plants and derived products against microbial infections: A review,†Planta Med., vol. 76, no. 14, pp. 1479–1491, 2010, doi: 10.1055/s-0030-1250027.

J. F. M. da Silva, M. C. de Souza, S. R. Matta, M. R. de Andrade, and F. V. N. Vidal, “Correlation analysis between phenolic levels of Brazilian propolis extracts and their antimicrobial and antioxidant activities,†Food Chem., vol. 99, no. 3, pp. 431–435, 2006, doi: https://doi.org/10.1016/j.foodchem.2005.07.055.

M. D. R. V. Fernandes et al., “Biological activities of the fermentation extract of the endophytic fungus Alternaria alternata isolated from Coffea arabica L.,†Brazilian J. Pharm. Sci., vol. 45, no. 4, pp. 677–685, 2009, doi: 10.1590/S1984-82502009000400010.

A. Borges, C. Ferreira, M. J. Saavedra, and M. Simões, “Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria,†Microb Drug Resist, vol. 19, no. 4, pp. 256–265, 2013.

S. Zhou et al., “Two new endophytic Colletotrichum species from Nothapodytes pittosporoides in China,†MycoKeys, vol. 49, pp. 1–14, 2019.

V. Guarnaccia, I. Martino, G. Gilardi, A. Garibaldi, and M. L. Gullino, “Colletotrichum spp. causing anthracnose on ornamental plants in northern Italy,†J. Plant Pathol., vol. 103, no. 1, pp. 127–137, 2021, doi: 10.1007/s42161-020-00684-2.

L. L. da Silva, H. L. A. Moreno, H. L. N. Correia, M. F. Santana, and M. V. de Queiroz, “Colletotrichum: species complexes, lifestyle, and peculiarities of some sources of genetic variability,†Appl Microbiol Biotechnol, vol. 104, pp. 1891–1904, 2020.

P. C. Chung et al., “Diversity and pathogenicity of Colletotrichum species causing strawberry anthracnose in Taiwan and description of a new species, Colletotrichum miaoliense sp. nov.,†Sci. Rep., vol. 10, no. 1, pp. 1–16, 2020, doi: 10.1038/s41598-020-70878-2.

A. MorkeliÅ«nÄ—, N. RasiukeviÄiÅ«tÄ—, and A. ValiuÅ¡kaitÄ—, “Meteorological conditions in a temperate climate for colletotrichum acutatum, strawberry pathogen distribution and susceptibility of different cultivars to anthracnose,†Agric., vol. 11, no. 1, pp. 1–13, 2021, doi: 10.3390/agriculture11010080.

W. Zou et al., “Metabolites of Colletotrichum gloeosporioides, an endophytic fungus in Artemisia mongolica,†J Nat Prod., vol. 63, no. 11, pp. 1529–1530, 2000.

Z. Dong et al., “Endophytic Diaporthe Associated With Citrus grandis cv. Tomentosa in China ,†Frontiers in Microbiology , vol. 11. p. 3621, 2021.

S. Huang, J. Xia, X. Zhang, and W. X. Sun, “Morphological and phylogenetic analyses reveal three new species of Diaporthe from Yunnan, China,†MycoKeys, vol. 78, pp. 49–77, 2021.

A. Agusta, D. Wulansari, Y. Jamal, A. Nurkanto, Praptiwi, and A. Fathoni, “Antibacterial Activity and Mode of Action of (+)-2,2’-Epicytoskyrin A,†Microbiol. Indones., vol. 9, no. 1, pp. 35–43, 2015, doi: https://doi.org/10.5454/mi.9.1.5.

L. Guo, S. Niu, S. Chen, and L. Liu, “Diaporone A, a new antibacterial secondary metabolite from the plant endophytic fungus Diaporthe sp.,†J. Antibiot, vol. 73, no. 2, pp. 116–119, 2020, doi: 10.1038/s41429-019-0251-3.

Q. Zhang et al., “α-pyrone derivatives from endophytic fungus Diaporthe sp. RJ-41,†Biochem. Syst. Ecol., vol. 94, no. August 2020, p. 104198, 2021, doi: 10.1016/j.bse.2020.104198.

X. N. Sang et al., “α-Pyrone derivatives with cytotoxic activities, from the endophytic fungus Phoma sp. YN02-P-3,†Biochem. Syst. Ecol., vol. 27, no. 16, pp. 3723–3725, 2017, doi: 10.1016/j.bmcl.2017.06.079.

J. Lou, L. Fu, Y. Peng, and L. Zhou, “Metabolites from Alternaria fungi and their bioactivities,†Molecules, vol. 18, no. 5, pp. 5891–5935, 2013, doi: 10.3390/molecules18055891.

X. M. Song et al., “A New Chromene Derivative from Alternaria sp. ZG22,†Chem. Nat. Compd., vol. 56, no. 3, pp. 409–411, 2020, doi: 10.1007/s10600-020-03049-4.

T. N. Sudharshana, H. N. Venkatesh, B. Nayana, K. Manjunath, and D. C. Mohana, “Anti-microbial and anti-mycotoxigenic activities of endophytic Alternaria alternata isolated from Catharanthus roseus (L.) G. Don.: molecular characterisation and bioactive compound isolation,†Mycology, vol. 10, no. 1, pp. 40–48, 2019, doi: 10.1080/21501203.2018.1541933.

S. Zhao et al., “Novel metabolites from the Cercis chinensis derived endophytic fungus Alternaria alternata ZHJG5 and their antibacterial activities,†Pest Manag. Sci., Jan. 2021, doi: https://doi.org/10.1002/ps.6251.

H. Yang et al., “Polyketides from Alternaria alternata MT-47, an endophytic fungus isolated from Huperzia serrata,†Fitoterapia, vol. 137, p. 104282, 2019, doi: https://doi.org/10.1016/j.fitote.2019.104282.




DOI: http://dx.doi.org/10.18517/ijaseit.12.5.14816

Refbacks

  • There are currently no refbacks.



Published by INSIGHT - Indonesian Society for Knowledge and Human Development