Managing Bank Soil on Surface Mining Operation with USLE Method

- Supandi, Emi Sukiyah


The most valuable layer in mining activities is topsoil, so adequate management is needed, especially in maintaining its quality, quantity, and mechanical properties. The land is used for revegetation, which supports post-mining success and can return the land to its original condition. This process starts by placing the soil in one area, and when the revegetation area is ready, it is removed. Soil is loose and has low mechanical properties, so it is susceptible to erosion when it rains. The research objective is to manage topsoil to maintain quantity and quality, and erosion and sediment load can be reduced. The analysis was carried out using the Universal Soil Loss Equation (USLE) method by changing the variable C (cover factor) through the option of planting Cymbopogon nardus. This plant has long roots that can increase soil cohesion, grows fast, and has economic value. Planting Cymbopogon nardus with a spacing of 0.8 m can reduce erosion by 175.67%, less than the bare soil condition. The value of the C factor decreased from 1 to 0.759 after planting Cymbopogon nardus with that spacing. The decrease in monthly erosion is 14.72-49.78 tons/ha/month, with an average decrease of 30.14 tons/ha/month or 361.69 tons/ha/year. Planting Cymbopogon nardus effectively reduces erosion at a lower cost and effort. This plant provides many benefits after leaves and stems can be distilled to produce essential oils.


Erosion; sedimentation; USLE; cover factor.

Full Text:



I. S. Somasiri, T. Hewawasam, and M. P. Rambukkange, "Adaptation of the revised universal soil loss equation to map spatial distribution of soil erosion in tropical watersheds: a GIS/RS-based study of the Upper Mahaweli River Catchment of Sri Lanka," model. Earth Syst. Environ. 2021, pp. 1–19, Aug. 2021, doi: 10.1007/S40808-021-01245-X.

V. R. Baker, "Playa," Encyclopedia Britannica, Jan. 27, 2020. (accessed Sep. 03, 2021).

L. Xu, D. Zhang, R. Proshad, Y. Chen, T. Huang, and A. Ugurlu, "Effects of soil conservation practices on soil erosion and the size selectivity of eroded sediment on cultivated slopes," J. Mt. Sci. 2021 185, vol. 18, no. 5, pp. 1222–1234, May 2021, doi: 10.1007/S11629-020-6569-2.

S. Swarnkar, A. Malini, S. Tripathi, and R. Sinha, "Assessment of uncertainties in soil erosion and sediment yield estimates at ungauged basins: An application to the Garra River basin, India," Hydrol. Earth Syst. Sci., vol. 22, no. 4, pp. 2471–2485, Apr. 2018, doi: 10.5194/HESS-22-2471-2018.

C. Setyawan, C.-Y. Lee, and M. Prawitasari, "Investigating spatial contribution of land use types and land slope classes on soil erosion distribution under tropical environment," Nat. Hazards 2019 982, vol. 98, no. 2, pp. 697–718, Aug. 2019, doi: 10.1007/S11069-019-03725-X.

S. A. Nehaï and M. S. Guettouche, "Soil loss estimation using the revised universal soil loss equation and a GIS-based model: a case study of Jijel Wilaya, Algeria," Arab. J. Geosci. 2020 134, vol. 13, no. 4, pp. 1–13, Feb. 2020, doi: 10.1007/S12517-020-5160-Z.

B. P. Ganasri and H. Ramesh, "Assessment of soil erosion by RUSLE model using remote sensing and GIS - A case study of Nethravathi Basin," Geosci. Front., vol. 7, no. 6, pp. 953–961, Nov. 2016, doi: 10.1016/J.GSF.2015.10.007.

A. Teshome et al., "Soil erosion modelling using GIS and revised universal soil loss equation approach: a case study of Guna-Tana landscape, Northern Ethiopia," Model. Earth Syst. Environ. 2020 71, vol. 7, no. 1, pp. 125–134, Jun. 2020, doi: 10.1007/S40808-020-00864-0.

B. Das, A. Paul, R. Bordoloi, O. P. Tripathi, and P. K. Pandey, "Soil erosion risk assessment of hilly terrain through integrated approach of RUSLE and geospatial technology: a case study of Tirap District, Arunachal Pradesh," model. Earth Syst. Environ. 2018 41, vol. 4, no. 1, pp. 373–381, Mar. 2018, doi: 10.1007/S40808-018-0435-Z.

H. Abdo and J. Salloum, "Mapping the soil loss in Marqya basin: Syria using RUSLE model in GIS and RS techniques," Environ. Earth Sci. 2017 763, vol. 76, no. 3, pp. 1–10, Jan. 2017, doi: 10.1007/S12665-017-6424-0.

M. F. Danesh, M. R. D. Ghaleno, E. Alvandi, S. G. Meshram, and E. Kahya, "Predicting the Impacts of Optimal Residential Development Scenario on Soil Loss Caused by Surface Runoff and Raindrops Using TOPSIS and WetSpa Models," Water Resour. Manag. 2020 3410, vol. 34, no. 10, pp. 3257–3277, Jul. 2020, doi: 10.1007/S11269-020-02611-7.

C. J. L. M. Falcão, S. M. de A. Duarte, and A. da Silva Veloso, "Estimating potential soil sheet Erosion in a Brazilian semiarid county using USLE, GIS, and remote sensing data," Environ. Monit. Assess. 2019 1921, vol. 192, no. 1, pp. 1–11, Dec. 2019, doi: 10.1007/S10661-019-7955-5.

A. Bera, "Assessment of soil loss by universal soil loss equation (USLE) model using GIS techniques: a case study of Gumti River Basin, Tripura, India," Model. Earth Syst. Environ. 2017 31, vol. 3, no. 1, pp. 1–9, Mar. 2017, doi: 10.1007/S40808-017-0289-9.

R. D. Hariyanto, T. N. Harsono, and F. Fadiarman, “Prediksi Laju Erosi Menggunakan Metode USLE (Universal Soil Loss Equation) Di Desa Karang Tengah Kecamatan Babakan Madang Kabupaten Bogor,” J. Geogr. Edukasi dan Lingkung., vol. 3, no. 2, pp. 92–99, Jul. 2019, doi: 10.29405/JGEL.V3I2.3580.

Y. Mukanov et al., "Estimation of annual average soil loss using the Revised Universal Soil Loss Equation (RUSLE) integrated in a Geographical Information System (GIS) of the Esil River basin (ERB), Kazakhstan," Acta Geophys. 2019 673, vol. 67, no. 3, pp. 921–938, May 2019, doi: 10.1007/S11600-019-00288-0.

M. Ebrahimi, H. Nejadsoleymani, A. Sadeghi, and M. R. Mansouri Daneshvar, "Assessment of the soil loss-prone zones using the USLE model in northeastern Iran," Paddy Water Environ. 2020 191, vol. 19, no. 1, pp. 71–86, Sep. 2020, doi: 10.1007/S10333-020-00820-9.

I. Ahmad, M. A. Dar, and T. G. Andualem, "Assessment of soil loss rate—Lake Tana basin, Ethiopia," Arab. J. Geosci. 2019 131, vol. 13, no. 1, pp. 1–7, Dec. 2019, doi: 10.1007/S12517-019-5013-9.

T. Sabzevari and A. Talebi, "Effect of hillslope topography on soil erosion and sediment yield using USLE model," Acta Geophys. 2019 676, vol. 67, no. 6, pp. 1587–1597, Sep. 2019, doi: 10.1007/S11600-019-00361-8.

M. Belayneh, T. Yirgu, and D. Tsegaye, "Effects of soil and water conservation practices on soil physicochemical properties in Gumara watershed, Upper Blue Nile Basin, Ethiopia," Ecol. Process. 2019 81, vol. 8, no. 1, pp. 1–14, Aug. 2019, doi: 10.1186/S13717-019-0188-2.

M. Zare, M. Mohammady, and B. Pradhan, "Modeling the effect of land use and climate change scenarios on future soil loss rate in Kasilian watershed of northern Iran," Environ. Earth Sci. 2017 768, vol. 76, no. 8, pp. 1–15, Apr. 2017, doi: 10.1007/S12665-017-6626-5.

S. Yin et al., "Regional soil erosion assessment based on a sample survey and geostatistics," Hydrol. Earth Syst. Sci., vol. 22, no. 3, pp. 1695–1712, Mar. 2018, doi: 10.5194/HESS-22-1695-2018.

Herizal, “La Nina Sedang Berkembang di Samudra Pasifik, Waspadai Dampaknya di Indonesia | BMKG,” Badan Meteorologi, Klimatologi, dan Geofisika (BMKG), Oct. 03, 2020.〈=ID&s=detil (accessed Sep. 03, 2021).

Humas, “Cegah Longsor, Presiden Jokowi Instruksikan Kepala BNPB Tanam Akar Wangi di Area-Area Gundul,” Sekretariat Kabinet Republik Indonesia, Jan. 05, 2020. (accessed Sep. 03, 2021).

Nutrition Division, "Fats and fatty acid in human nutrition: Report of an expert consultation," Rome, 2010. Accessed: Sep. 03, 2021. [Online]. Available:

J.-W. Lee, W.-K. Kim, J. Han, W.-H. Jang, and C.-H. Kim, "Fault area estimation using traveling wave for wide area protection," J. Mod. Power Syst. Clean Energy 2016 43, vol. 4, no. 3, pp. 478–486, Jul. 2016, doi: 10.1007/S40565-016-0222-7.

S. Ullah, A. Ali, M. Iqbal, M. Javid, and M. Imran, "Geospatial assessment of soil erosion intensity and sediment yield: a case study of Potohar Region, Pakistan," Environ. Earth Sci., vol. 77, no. 19, pp. 1–13, Oct. 2018, doi: 10.1007/S12665-018-7867-7.

J. Zhou, B. Fu, G. Gao, Y. Lü, and S. Wang, "An integrated probabilistic assessment to analyse stochasticity of soil erosion in different restoration vegetation types," Hydrol. Earth Syst. Sci., vol. 21, no. 3, pp. 1491–1514, Mar. 2017, doi: 10.5194/HESS-21-1491-2017.

Supandi, Z. Zakaria, E. Sukiyah, and A. Sudradjat, "The Correlation of Exposure Time and Claystone Properties at The Warukin Formation Indonesia," Int. J. GEOMATE, vol. 15, no. 52, pp. 160–167, Dec. 2018, doi: 10.21660/2018.52.68175.

Supandi, Z. Zakaria, E. Sukiyah, and A. Sudradjat, "The Influence of Kaolinite - Illite toward mechanical properties of Claystone," Open Geosci., vol. 11, no. 1, pp. 440–446, Jan. 2019, doi: 10.1515/GEO-2019-0035.

Supandi and H. G. Hartono, "Geomechanic Properties and Provenance Analysis of Quartz Sandstone from The Warukin Formation," Int. J. GEOMATE, vol. 18, no. 66, pp. 140–149, Feb. 2020, doi: 10.21660/2020.66.50081.

Supandi, Z. Zakaria, E. Sukiyah, and A. Sudradjat, "New Constants of Fracture Angle on Quartz Sandstone," Int. J. Adv. Sci. Eng. Inf. Technol., vol. 10, no. 4, pp. 1597–1603, Aug. 2020, doi: 10.18517/IJASEIT.10.4.8272.

F. Erawan, E. Sukiyah, J. Hutabarat, and A. Sudradjat, “The Permeability of Granite Weathering Soil in Tanjungpinang, Bintan Island, Indonesia,” J. Geosci. Eng. Environ. Technol., vol. 5, no. 3, pp. 134–140, Aug. 2020, doi: 10.25299/JGEET.2020.5.3.5285.

The Editors of Encyclopaedia Britannica, "Erosion," Encyclopedia Britannica, May 22, 2020. (accessed Sep. 03, 2021).

Daswir, “Peran Seraiwangi sebagai Tanaman Konservasi pada Pertanaman Kakao di Lahan Kritis,” Bul. Penelit. Tanam. Rempah dan Obat, vol. 21, no. 2, pp. 117–128, Sep. 2016, doi: 10.21082/bullittro.v21n2.2010.%p.

A. Mahala, "Soil erosion estimation using RUSLE and GIS techniques—a study of a plateau fringe region of tropical environment," Arab. J. Geosci. 2018 1113, vol. 11, no. 13, pp. 1–18, Jun. 2018, doi: 10.1007/S12517-018-3703-3.



  • There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development