Evaluation of Parameter Selection in the Bivariate Statistical-based Landslide Susceptibility Modeling (Case Study: the Citarik Sub-watershed, Indonesia)

- Sukristiyanti, Ketut Wikantika, Imam Achmad Sadisun, Lissa Fajri Yayusman, Adrin Tohari, Moch. Hilmi Zaenal Putra


A landslide susceptibility mapping is essential for landslide hazard mitigation to reduce the associated risk. This paper aims to present the results of the landslide susceptibility modeling in the Citarik sub-watershed using three bivariate statistical-based methods, i.e., frequency ratio (FR), information value (IV), and weight of evidence (WoE). The main objective of this study is to evaluate the significance of the threshold of the area under curve (AUC) value in parameter selection. In this study, 118 landslide pixels were compiled from Google Earth images, unmanned aircraft vehicle (UAV) aerial photos taken just after the landslide, official landslide reports, and field observation. Thirteen landslide causative factors were prepared in Geographic Information System (GIS) environment, derived from various satellite images and maps. The landslide data were divided into two groups, 70% of data as training data and the rest as test data. Two scenarios that involve a different number of parameters were compared to explain the threshold of the AUC value in parameter selection and model accuracy. The result of this study shows that the AUC value threshold of 0.6 for parameter selection cannot be applied in all cases, and the performance of both two scenarios was excellent in assessing landslide susceptibility in this study area. Those three landslide susceptibility zonation maps of the best scenario showed that the sub-watershed's northern, northeastern, south-eastern, and southern parts were under high to very high susceptibility to landslides, including the Cimanggung area where a recent deadly double landslide occurred.


Bivariate statistical-based method; GIS; landslide susceptibility mapping; modeling.

Full Text:



D. Petley, “Protecting the rescuers – a disastrous double landslide at Cihanjuang in Indonesia and a lucky escape in Italy,” 2021. https://blogs.agu.org/landslideblog/2021/01/10/cihanjuang/ (accessed Jan. 11, 2021).

H. Hong et al., Landslide susceptibility assessment at the Wuning area, China: a comparison between multi-criteria decision making, bivariate statistical and machine learning methods, vol. 96, no. 1. Springer Netherlands, 2019.

F. Li et al., “Influence of earthquakes on landslide susceptibility in a seismic prone catchment in central Asia,” Appl. Sci., vol. 11, no. 9, 2021, doi: 10.3390/app11093768.

C. J. van Westen, E. Castellanos, and S. L. Kuriakose, “Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview,” Eng. Geol., vol. 102, no. 3–4, pp. 112–131, 2008, doi: 10.1016/j.enggeo.2008.03.010.

J. I. Barredo, A. Benavides, J. Hervás, and C. J. Van Westen, “Comparing heuristic landslide hazard assessment techniques using GIS in the Tirajana basin, Gran Canaria Island, Spain,” Int. J. Appl. Earth Obs. Geoinf., vol. 2000, no. 1, pp. 9–23, 2000, doi: 10.1016/s0303-2434(00)85022-9.

S. Lee and J. A. Talib, “Probabilistic landslide susceptibility and factor effect analysis,” Environ. Geol., vol. 47, no. 7, pp. 982–990, 2005, doi: 10.1007/s00254-005-1228-z.

B. Pradhan, “Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches,” J. Indian Soc. Remote Sens., vol. 38, no. 2, pp. 301–320, 2010, doi: 10.1007/s12524-010-0020-z.

W. Luo and C. C. Liu, “Innovative landslide susceptibility mapping supported by geomorphon and geographical detector methods,” Landslides, vol. 15, no. 3, pp. 465–474, 2018, doi: 10.1007/s10346-017-0893-9.

M. S. G. Adnan, M. S. Rahman, N. Ahmed, B. Ahmed, M. F. Rabbi, and R. M. Rahman, “Improving spatial agreement in machine learning-based landslide susceptibility mapping,” Remote Sens., vol. 12, no. 20, pp. 1–23, 2020, doi: 10.3390/rs12203347.

V. H. Nhu et al., “Landslide susceptibility mapping using machine learning algorithms and remote sensing data in a tropical environment,” Int. J. Environ. Res. Public Health, vol. 17, no. 14, pp. 1–23, 2020, doi: 10.3390/ijerph17144933.

X. Zhou et al., “Zonation of Landslide Susceptibility in Ruijin , Jiangxi , China,” 2021.

M. Juliev, M. Mergili, I. Mondal, B. Nurtaev, A. Pulatov, and J. Hübl, “Comparative analysis of statistical methods for landslide susceptibility mapping in the Bostanlik District, Uzbekistan,” Sci. Total Environ., vol. 653, pp. 801–814, 2019, doi: 10.1016/j.scitotenv.2018.10.431.

H. J. Oh, S. Lee, and G. M. Soedradjat, “Quantitative landslide susceptibility mapping at Pemalang area, Indonesia,” Environ. Earth Sci., vol. 60, no. 6, pp. 1317–1328, 2010, doi: 10.1007/s12665-009-0272-5.

R. Mind’je et al., “Landslide susceptibility and influencing factors analysis in Rwanda,” Environ. Dev. Sustain., vol. 22, no. 8, pp. 7985–8012, 2020, doi: 10.1007/s10668-019-00557-4.

S. Razavizadeh, K. Solaimani, M. Massironi, and A. Kavian, “Mapping landslide susceptibility with frequency ratio, statistical index, and weights of evidence models: a case study in northern Iran,” Environ. Earth Sci., vol. 76, no. 14, pp. 1–16, 2017, doi: 10.1007/s12665-017-6839-7.

Y. Ge et al., “A comparison of five methods in landslide susceptibility assessment: a case study from the 330-kV transmission line in Gansu Region, China,” Environ. Earth Sci., vol. 77, no. 19, pp. 1–15, 2018, doi: 10.1007/s12665-018-7814-7.

A. A. Othman, R. Gloaguen, L. Andreani, and M. Rahnama, “Improving landslide susceptibility mapping using morphometric features in the Mawat area, Kurdistan Region, NE Iraq: Comparison of different statistical models,” Geomorphology, vol. 319, pp. 147–160, 2018, doi: 10.1016/j.geomorph.2018.07.018.

J. Liu and Z. Duan, “Quantitative assessment of landslide susceptibility comparing statistical index, index of entropy, and weights of evidence in the Shangnan Area, China,” Entropy, vol. 20, no. 11, pp. 9–11, 2018, doi: 10.3390/e20110868.

S. Sumaryono, D. Muslim, N. Sulaksana, and Y. Dasatriana, “Weights of Evidence Method for Landslide Susceptibility Mapping in Tandikek and Damar Bancah, West Sumatra, Indonesia,” Int. J. Sci. Res., vol. 4, no. 10, pp. 1283–1290, 2015.

A. K. Batar and T. Watanabe, “Landslide Susceptibility Mapping and Assessment Using Geospatial Platforms and Weights of Evidence (WoE) Method in the Indian Himalayan Region: Recent Developments, Gaps, and Future Directions,” ISPRS Int. J. Geo-Information, vol. 10, no. 3, p. 114, 2021, doi: 10.3390/ijgi10030114.

A. Aditian, T. Kubota, and Y. Shinohara, “Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia,” Geomorphology, vol. 318, pp. 101–111, 2018, doi: 10.1016/j.geomorph.2018.06.006.

E. R. Sujatha and V. Sridhar, “Landslide susceptibility analysis: A logistic regression model case study in Coonoor, India,” Hydrology, vol. 8, no. 1, 2021, doi: 10.3390/hydrology8010041.

U. Ozturk, M. Pittore, R. Behling, S. Roessner, L. Andreani, and O. Korup, “How robust are landslide susceptibility estimates?,” Landslides, vol. 18, no. 2, pp. 681–695, 2021, doi: 10.1007/s10346-020-01485-5.

B. Kalantar, B. Pradhan, S. Amir Naghibi, A. Motevalli, and S. Mansor, “Assessment of the effects of training data selection on the landslide susceptibility mapping: a comparison between support vector machine (SVM), logistic regression (LR) and artificial neural networks (ANN),” Geomatics, Nat. Hazards Risk, vol. 9, no. 1, pp. 49–69, 2018, doi: 10.1080/19475705.2017.1407368.

T. Kavzoglu, I. Colkesen, and E. K. Sahin, Landslides: Theory, Practice and Modelling, vol. 50. 2019.

M. Marjanovic, “Advanced methods for landslide assessment using GIS,” Palacký University Olomouc, 2013.

W. Chen, H. R. Pourghasemi, and S. A. Naghibi, “Prioritization of landslide conditioning factors and its spatial modeling in Shangnan County, China using GIS-based data mining algorithms,” Bull. Eng. Geol. Environ., vol. 77, no. 2, pp. 611–629, 2018, doi: 10.1007/s10064-017-1004-9.

J. Cao, Z. Zhang, C. Wang, J. Liu, and L. Zhang, “Susceptibility assessment of landslides triggered by earthquakes in the Western Sichuan Plateau,” Catena, vol. 175, no. December 2018, pp. 63–76, 2019, doi: 10.1016/j.catena.2018.12.013.

J. S. Lai and F. Tsai, “Improving GIS-based landslide susceptibility assessments with multi-temporal remote sensing and machine learning,” Sensors (Switzerland), vol. 19, no. 17, pp. 1–25, 2019, doi: 10.3390/s19173717.

P. Reichenbach, M. Rossi, B. D. Malamud, M. Mihir, and F. Guzzetti, “A review of statistically-based landslide susceptibility models,” Earth-Science Rev., vol. 180, no. March, pp. 60–91, 2018, doi: 10.1016/j.earscirev.2018.03.001.

Y. Arifianti, Pamela, F. Agustin, and D. Muslim, “Comparative study among bivariate statistical models in landslide susceptibility map,” Indones. J. Geosci., vol. 7, no. 1, pp. 51–63, 2020, doi: 10.17014/IJOG.7.1.51-63.

T. Blaschke, B. Feizizadeh, and D. Hölbling, “Object-based image analysis and digital terrain analysis for locating landslides in the Urmia Lake basin, Iran,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 7, no. 12, pp. 4806–4817, 2014, doi: 10.1109/JSTARS.2014.2350036.

C. Xu, “Preparation of earthquake-triggered landslide inventory maps using remote sensing and GIS technologies: Principles and case studies,” Geosci. Front., vol. 6, no. 6, pp. 825–836, 2015, doi: 10.1016/j.gsf.2014.03.004.

Y. Arifianti and F. Agustin, GIS Landslide. Tokyo: Springer Japan, 2017.

E. Nohani, M. Moharrami, and S. Sharafi, “Landslide Susceptibility Mapping Using Different GIS-Based Bivariate Models,” Water, vol. 11, no. 1402, pp. 1–22, 2019.

Pamela, I. A. Sadisun, and Y. Arifianti, “Weights of Evidence Method for Landslide Susceptibility Mapping in Takengon, Central Aceh, Indonesia,” IOP Conf. Ser. Earth Environ. Sci., vol. 118, no. 1, 2018, doi: 10.1088/1755-1315/118/1/012037.

S. Mandal and K. Mandal, “Bivariate statistical index for landslide susceptibility mapping in the Rorachu river basin of eastern Sikkim Himalaya, India,” Spat. Inf. Res., vol. 26, no. 1, pp. 59–75, 2018, doi: 10.1007/s41324-017-0156-9.

H. R. Pourghasemi, H. R. Moradi, and S. M. Fatemi Aghda, “Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances,” Nat. Hazards, vol. 69, no. 1, pp. 749–779, 2013, doi: 10.1007/s11069-013-0728-5.

D. Wang, M. Hao, S. Chen, Z. Meng, D. Jiang, and F. Ding, “Assessment of landslide susceptibility and risk factors in China,” Nat. Hazards, no. 0123456789, 2021, doi: 10.1007/s11069-021-04812-8.

R. Schlögel, I. Marchesini, M. Alvioli, P. Reichenbach, M. Rossi, and J. P. Malet, “Optimizing landslide susceptibility zonation: Effects of DEM spatial resolution and slope unit delineation on logistic regression models,” Geomorphology, vol. 301, pp. 10–20, 2018, doi: 10.1016/j.geomorph.2017.10.018.

B. T. Pham et al., “Landslide susceptibility assessment by novel hybrid machine learning algorithms,” Sustain., vol. 11, no. 16, pp. 1–25, 2019, doi: 10.3390/su11164386.

J. Cao, Z. Zhang, J. Du, L. Zhang, Y. Song, and G. Sun, “Multi-geohazards susceptibility mapping based on machine learning—a case study in Jiuzhaigou, China,” Nat. Hazards, vol. 102, no. 3, pp. 851–871, 2020, doi: 10.1007/s11069-020-03927-8.

D. Noor, Geomorfologi. Universitas Pakuan, 2010.

A. K. S. D. P. Budha, “GIS Based Landslide Susceptibility Mapping along the Road Section from Bandeu to Barahabise, Sindhupal Chowk District of Nepal,” Int. J. Sci. Res., vol. 7, no. 11, pp. 465–471, 2018, doi: 10.21275/ART20192474.

E. Pimiento, “Shallow Landslide Susceptibility Modelling and Validation,” Ehime University (Japan), 2010.

H. He, D. Hu, Q. Sun, L. Zhu, and Y. Liu, “A landslide susceptibility assessment method based on GIS technology and an AHP-weighted information content method: A case study of southern Anhui, China,” ISPRS Int. J. Geo-Information, vol. 8, no. 6, 2019, doi: 10.3390/ijgi8060266.

S. Beguería, “Validation and evaluation of predictive models in hazard assessment and risk management,” Nat. Hazards, vol. 37, no. 3, pp. 315–329, 2006, doi: 10.1007/s11069-005-5182-6.

I. Yilmaz, “Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: A case study from Kat landslides (Tokat-Turkey),” Comput. Geosci., vol. 35, no. 6, pp. 1125–1138, 2009, doi: 10.1016/j.cageo.2008.08.007.

A. Merghadi, B. Abderrahmane, and D. Tien Bui, “Landslide susceptibility assessment at Mila basin (Algeria): A comparative assessment of prediction capability of advanced machine learning methods,” ISPRS Int. J. Geo-Information, vol. 7, no. 7, 2018, doi: 10.3390/ijgi7070268.

A. R. Rasyid, N. P. Bhandary, and R. Yatabe, “Performance of frequency ratio and logistic regression model in creating GIS based landslides susceptibility map at Lompobattang Mountain, Indonesia,” Geoenvironmental Disasters, vol. 3, no. 1, 2016, doi: 10.1186/s40677-016-0053-x.

G. Samodra, G. Chen, J. Sartohadi, and K. Kasama, “Comparing data-driven landslide susceptibility models based on participatory landslide inventory mapping in Purwosari area, Yogyakarta, Java,” Environ. Earth Sci., vol. 76, no. 4, pp. 1–19, 2017, doi: 10.1007/s12665-017-6475-2.

M. M. Awawdeh, M. A. ElMughrabi, and M. Y. Atallah, “Landslide susceptibility mapping using GIS and weighted overlay method: a case study from North Jordan,” Environ. Earth Sci., vol. 77, no. 21, pp. 1–15, 2018, doi: 10.1007/s12665-018-7910-8.

E. Psomiadis, A. Papazachariou, K. X. Soulis, D. S. Alexiou, and I. Charalampopoulos, “Landslide mapping and susceptibility assessment using geospatial analysis and earth observation data,” Land, vol. 9, no. 5, 2020, doi: 10.3390/LAND9050133.

W. Xie et al., “A Novel Hybrid Method for Landslide Susceptibility Mapping-Based GeoDetector and Machine Learning Cluster : A Case of Xiaojin County , China,” 2021.

Z. Umar, B. Pradhan, A. Ahmad, M. N. Jebur, and M. S. Tehrany, “Earthquake induced landslide susceptibility mapping using an integrated ensemble frequency ratio and logistic regression models in West Sumatera Province, Indonesia,” Catena, vol. 118, no. September 2009, pp. 124–135, 2014, doi: 10.1016/j.catena.2014.02.005.

DOI: http://dx.doi.org/10.18517/ijaseit.12.1.14737


  • There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development