Floating Rice Cultivation: a Solution to Reduce Crop Failure in Flood-Prone Areas

- Mujiyo, Heru Irianto, Erlyna Wida Riptanti, Aulia Qonita


Bojonegoro is a regency in Indonesia located downstream of the Bengawan Solo River, a flood-prone area that caused crop damage and failure. The farmers need appropriate technology as an adaptation to reduce the loss of crop failure. Therefore, this study aims to determine the potential of floating rice cultivation as a solution for reducing crop failure. The experiment was arranged in Randomized Complete Block Design with two factors, namely planting media (soil:organic fertilizer (1:1) (M1); soil:rice husk (1:1) (M2); soil:organic fertilizer:rice husk (1:1:1) (M3)), and plant spacing (15 cm x 15 cm (J1); 20 cm x 20 cm (J2); 25 cm x 25 cm (J3)). Each unit treatment was replicated 3 times. The results showed M2J3 gave the best outcome on plant height of 94.3 cm, the tillers number of 21.7, and produced the highest rice yield of 14.16 tons ha-1. This treatment provides optimal soil conditions, high cation exchange capacity (CEC) of 26.6 cmol (+) kg-1, phosphorus availability (Av-P) 48.5 ppm, and potassium availability 0.9 ppm. The planting media compositions significantly affected soil cation exchange capacity, soil phosphorus availability, plant height, tillers number, and rice yield. The yield on floating rice cultivation was approximately similar when compared to the local farmer's fields. Floating rice cultivation can be used as a solution to reduce crop failure in flood-prone areas in Bojonegoro.


adaptation; crop failure; floating rice cultivation; flood-prone area

Full Text:



I. Ridwansyah et al., “The impact of land use and climate change on surface runoff and groundwater in Cimanuk watershed, Indonesia,” Limnology, vol. 21, no. 3, pp. 487–498, 2020, doi: 10.1007/s10201-020-00629-9.

K. Yamamoto, T. Sayama, and Apip, “Impact of climate change on flood inundation in a tropical river basin in Indonesia,” Prog. Earth Planet. Sci., 2021, doi: 10.1186/s40645-020-00386-4.

N. flood management agency Indonesia, “Disaster in Indonesia,” 2020. https://www.gfdrr.org/indonesia.

Regional Disaster Management Agency of Bojonegoro Regency, “No Title.” http://bpbd.bojonegorokab.go.id.

H. Irianto, Mujiyo, E. W. Riptanti, and A. Qonita, “The land use potential of flood-prone rice fields using floating rice system in Bojonegoro regency in East Java,” IOP Conf. Ser. Earth Environ. Sci., vol. 142, no. 1, 2018, doi: 10.1088/1755-1315/142/1/012072.

R. M. S. Prastica, C. Maitri, A. Hermawan, P. C. Nugroho, D. Sutjiningsih, and E. Anggraheni, “Estimating design flood and HEC-RAS modelling approach for flood analysis in Bojonegoro city,” IOP Conf. Ser. Mater. Sci. Eng., vol. 316, no. 1, 2018, doi: 10.1088/1757-899X/316/1/012042.

R. Roy, A. K. Gain, M. A. Hurlbert, N. Samat, M. L. Tan, and N. W. Chan, “Designing adaptation pathways for flood-affected households in Bangladesh,” Environ. Dev. Sustain., vol. 23, no. 4, pp. 5386–5410, 2021, doi: 10.1007/s10668-020-00821-y.

E. W. Riptanti, Mujiyo, H. Irianto, and A. Qonita, “Efficiency of experimental scale floating rice farming in flood-prone areas,” Ecol. Environ. Conserv., 2019.

B. B. Shrestha et al., “Assessing flood disaster impacts in agriculture under climate change in the river basins of Southeast Asia,” Nat. Hazards, vol. 97, no. 1, pp. 157–192, 2019, doi: 10.1007/s11069-019-03632-1.

E. Siaga et al., “Application of floating culture system in chili pepper (Capsicum annum L.) during prolonged flooding period at riparian wetland in Indonesia,” Aust. J. Crop Sci., 2018, doi: 10.21475/ajcs.18.12.05.PNE1007.

H. Irianto, Mujiyo, A. Qonita, and E. W. Riptanti, “Socio-economic characteristics of farmers on the existence of floating-rice cultivation demonstration plots in flood prone area in Bojonegoro, East Java,” IOP Conf. Ser. Earth Environ. Sci., vol. 314, no. 1, 2019, doi: 10.1088/1755-1315/314/1/012048.

R. B. Chowdhury and G. A. Moore, “Floating agriculture: a potential cleaner production technique for climate change adaptation and sustainable community development in Bangladesh,” J. Clean. Prod., 2017, doi: 10.1016/j.jclepro.2015.10.060.

V. H. Tu, N. D. Can, Y. Takahashi, and M. Yabe, “Water Use Efficiency in Rice Production: Implications for Climate Change Adaptation in the Vietnamese Mekong Delta,” Process Integr. Optim. Sustain., 2018, doi: 10.1007/s41660-018-0038-1.

R. Singh and G. S. Singh, “Traditional agriculture: a climate-smart approach for sustainable food production,” Energy, Ecology and Environment. 2017, doi: 10.1007/s40974-017-0074-7.

M. K. Hasan, S. Desiere, M. D’Haese, and L. Kumar, “Impact of climate-smart agriculture adoption on the food security of coastal farmers in Bangladesh,” Food Secur., 2018, doi: 10.1007/s12571-018-0824-1.

B. Lakitan et al., “Recognizing farmers’ practices and constraints for intensifying rice production at Riparian Wetlands in Indonesia,” NJAS - Wageningen J. Life Sci., 2018, doi: 10.1016/j.njas.2018.05.004.

S. Purnamawati, “Potensi Pengembangan Teknologi Budidaya Padi Apung untuk Mengatasi Risiko Banjir,” Institut Pertanian Bogor, 2013.

E. Siaga and B. Lakitan, “Budi daya Terapung Tanaman Sawi Hijau dengan Perbedaan Dosis Pupuk NPK, Ukuran Polibag, dan Waktu Pemupukan,” J. Ilmu Pertan. Indones., 2021, doi: 10.18343/jipi.26.1.136.

H. Irianto, Mujiyo, E. W. Riptanti, and A. Qonita, “Farmers ’ intention to adopt agriculture technology in the flood-prone areas,” Eurasian J. Biosci., vol. 7658, no. 2, pp. 7651–7658, 2020.

Soil Research Center, “Soil Fertility Evaluation Technical Instructions,” Bogor, 1995.

M. Mujiyo, Y. Y. Setyawan, A. Herawati, and H. Widijanto, “The effect of land use on soil quality in Giriwoyo Sub-district, Wonogiri Regency,” J. Degrad. Min. Lands Manag., 2021, doi: 10.15243/jdmlm.2021.082.2559.

K. Mehmood, M. A. Al Baquy, and R. kou Xu, “Influence of nitrogen fertilizer forms and crop straw biochars on soil exchange properties and maize growth on an acidic Ultisol,” Arch. Agron. Soil Sci., 2018, doi: 10.1080/03650340.2017.1385062.

M. Mujiyo, S. Suntoro, R. P. Tyas, A. Herawati, and H. Widijanto, “Mapping soil quality in various land uses as a basis for soil management in Wonogiri, Indonesia,” J. Settlements Spat. Plan., vol. 11, no. 2, pp. 127–135, 2020, doi: 10.24193/JSSP.2020.2.06.

C. Singh, S. Tiwari, V. K. Gupta, and J. S. Singh, “The effect of rice husk biochar on soil nutrient status, microbial biomass and paddy productivity of nutrient poor agriculture soils,” Catena, 2018, doi: 10.1016/j.catena.2018.07.042.

Z. Li et al., “Effects of phytolithic rice-straw biochar, soil buffering capacity and pH on silicon bioavailability,” Plant Soil, 2019, doi: 10.1007/s11104-019-04013-0.

S. Suntoro et al., “Effect of cow manure and dolomite on nutrient uptake and growth of corn (Zea mays l.),” Bulg. J. Agric. Sci., vol. 24, no. 6, pp. 1020–1026, 2018.

A. K. Thakur, K. G. Mandal, and S. Raychaudhuri, “Impact of crop and nutrient management on crop growth and yield, nutrient uptake and content in rice,” Paddy Water Environ., 2020, doi: 10.1007/s10333-019-00770-x.

M. Asghar, T. ul Hassan, M. Arshad, A. Aziz, M. T. Latif, and A. M. Sabir, “Effect of plant spacing on incidence of rice planthoppers in transplanted rice crop,” Int. J. Trop. Insect Sci., 2021, doi: 10.1007/s42690-020-00242-4.

W. Hou et al., “Nitrogen rate and plant density interaction enhances radiation interception, yield and nitrogen use efficiency of mechanically transplanted rice,” Agric. Ecosyst. Environ., 2019, doi: 10.1016/j.agee.2018.10.001.

M. S. Masulili, A., Utomo, W. H., and Syechfani, “Rice Husk Biochar for Rice Based Cropping System in Acid Soil 1. The Characteristics of Rice Husk Biochar and Its Influence on the Properties of Acid Sulfate Soils and Rice Growth in West Kalimantan, Indonesia,” J. Agric. Sci., vol. 2, pp. 39–47, 2010.

E. P. A. Pratiwi and Y. Shinogi, “Rice husk biochar application to paddy soil and its effects on soil physical properties, plant growth, and methane emission,” Paddy Water Environ., vol. 14, no. 4, pp. 521–532, 2016, doi: 10.1007/s10333-015-0521-z.

M. Ghorbani, H. Asadi, and S. Abrishamkesh, “Effects of rice husk biochar on selected soil properties and nitrate leaching in loamy sand and clay soil,” Int. Soil Water Conserv. Res., 2019, doi: 10.1016/j.iswcr.2019.05.005.

B. A. Goodman, “Utilization of waste straw and husks from rice production: A review,” Journal of Bioresources and Bioproducts. 2020, doi: 10.1016/j.jobab.2020.07.001.

J. O. Eduah, E. K. Nartey, M. K. Abekoe, H. Breuning-Madsen, and M. N. Andersen, “Phosphorus retention and availability in three contrasting soils amended with rice husk and corn cob biochar at varying pyrolysis temperatures,” Geoderma, 2019, doi: 10.1016/j.geoderma.2019.01.016.

K. Kartika et al., “Effects of particle size and application rate of rice-husk biochar on chemical properties of tropical wetland soil, rice growth and yield,” Aust. J. Crop Sci., 2018, doi: 10.21475/ajcs.18.12.05.PNE1043.

A. Herawati, J. Syamsiyah, Mujiyo, M. Rochmadtulloh, A. A. Susila, and M. R. Romadhon, “Mycorrhizae and a soil ameliorant on improving the characteristics of sandy soil,” Sains Tanah, vol. 12, no. 2, 2021, doi: 10.20961/STJSSA.V18I1.43697.

N. J. Sithole and L. S. Magwaza, “Long-term changes of soil chemical characteristics and maize yield in no-till conservation agriculture in a semi-arid environment of South Africa,” Soil Tillage Res., vol. 194, 2019, doi: 10.1016/j.still.2019.104317.

A. Cai et al., “Manure acts as a better fertilizer for increasing crop yields than synthetic fertilizer does by improving soil fertility,” Soil Tillage Res., vol. 189, 2019, doi: 10.1016/j.still.2018.12.022.

W. Ahmed et al., “Tillage practices improve rice yield and soil phosphorus fractions in two typical paddy soils,” J. Soils Sediments, 2020, doi: 10.1007/s11368-019-02468-3.

Y. Zhang, W. Zhang, M. Wu, G. Liu, Z. Zhang, and J. Yang, “Effects of irrigation schedules and phosphorus fertilizer rates on grain yield and quality of upland rice and paddy rice,” Environ. Exp. Bot., 2021, doi: 10.1016/j.envexpbot.2021.104465.

A. S. Saputra, S. Suprihati, and E. Pudjihartati, “The Effect of Phosphorus and Potassium on the Growth and Quality of Viola (Viola cornuta L.) Seed Production,” Caraka Tani J. Sustain. Agric., 2019, doi: 10.20961/carakatani.v35i1.33618.

Y. Deng et al., “Tolerance to low phosphorus in rice varieties is conferred by regulation of root growth,” Crop J., 2020, doi: 10.1016/j.cj.2020.01.002.

S. Aravindakshan et al., “Quantifying farmers’ preferences for cropping systems intensification: A choice experiment approach applied in coastal Bangladesh’s risk prone farming systems,” Agric. Syst., 2021, doi: 10.1016/j.agsy.2021.103069.

DOI: http://dx.doi.org/10.18517/ijaseit.12.3.14665


  • There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development