An Investigation of Computation Time Based on Domain Size in WRF Model
Abstract
Keywords
Full Text:
PDFReferences
P. Pacheco, “Why Parallel Programming?,” in An Introduction to Parallel Programming, P. S. Pacheco, Ed. San Francisco: Elsevier, 2011, pp. 1–14.
W. C. Skamarock et al., “A Description of the Advanced Research WRF Model Version 4,” Boulder, CO, USA, 2019. doi: http://dx.doi.org/10.5065/1dfh-6p97.
B. C. Ancell, A. Bogusz, M. J. Lauridsen, and C. J. Nauert, “Seeding chaos: The dire consequences of numerical noise in NWP perturbation experiments,” Bull. Am. Meteorol. Soc., vol. 99, no. 3, pp. 615–628, 2018, doi: 10.1175/BAMS-D-17-0129.1.
NCAR|UCAR, “WRF scaling and timing _ Computational and Information Systems Laboratory,” cisl.ucar.edu, 2020. https://www2.cisl.ucar.edu/resources/wrf-scaling-and-timing#scaling (accessed Oct. 26, 2020).u8u8
J. G. Powers et al., “The weather research and forecasting model: Overview, system efforts, and future directions,” Bulletin of the American Meteorological Society, vol. 98, no. 8, pp. 1717–1737, 2017.
Y. Li et al., “High-resolution regional climate modeling and projection over western Canada using a weather research forecasting model with a pseudo-global warming approach,” Hydrol. Earth Syst. Sci., vol. 23, no. 11, pp. 4635–4659, 2019, doi: 10.5194/hess-23-4635-2019.
A. Z. Abualkishik, “A comparative study on the software architecture of WRF and other numerical weather prediction models,” J. Theor. Appl. Inf. Technol., vol. 96, no. 24, pp. 8244–8254, 2018, [Online]. Available: https://www.researchgate.net/profile/Abedallah-Abualkishik-2/publication/330171087_a_comparative_study_on_the_software_architecture_of_wrf_and_other_numerical_weather_prediction_models/links/5c311530299bf12be3b1c396/a-comparative-study-on-the-SOFTWARE-ARC.
Y. Kim, K. Sartelet, J. C. Raut, and P. Chazette, “Evaluation of the Weather Research and Forecast/Urban Model Over Greater Paris,” Boundary-Layer Meteorol., vol. 149, no. 1, pp. 105–132, 2013, doi: 10.1007/s10546-013-9838-6.
H. Duan, Y. Li, T. Zhang, Z. Pu, C. Zhao, and Y. Liu, “Evaluation of the Forecast Accuracy of Near-Surface Temperature and Wind in Northwest China Based on the WRF Model,” J. Meteorol. Res., vol. 32, no. 3, pp. 469–490, 2018, doi: 10.1007/s13351-018-7115-9.
S. Sharma, R. Siddique, S. Reed, P. Ahnert, and A. Mejia, “Hydrological model diversity enhances streamflow forecast skill at short-to medium-range timescales,” Water Resour. Res., vol. 55, no. 2, pp. 1510–1530, 2019, doi: 10.1029/2018WR023197.
S. Höfinger, T. Ruh, and E. Haunschmid, “Fast Approximate Evaluation of Parallel Overhead from a Minimal Set of Measured Execution Times,” Parallel Process. Lett., vol. 28, no. 1, pp. 1–12, 2018, doi: 10.1142/S0129626418500032.
W. Wu, L. He, W. Lin, R. Mao, and S. Jarvis, “SAFA: A semi-asynchronous protocol for fast federated learning with low overhead,” IEEE Trans. Comput., vol. 70, no. 5, pp. 1–16, 2019, doi: 10.1109/tc.2020.2994391.
D. Meyer et al., “WRF-TEB: Implementation and Evaluation of the Coupled Weather Research and Forecasting (WRF) and Town Energy Balance (TEB) Model,” J. Adv. Model. Earth Syst., vol. 12, no. 8, p. 18, 2020, doi: 10.1029/2019MS001961.
A. Golzio, S. Ferrarese, C. Cassardo, G. Adele, and D. Manuela, “Land-Use Improvements in the Weather Research and Forecasting Model over Complex Mountainous Terrain and Comparison of Different Grid Sizes,” Boundary-Layer Meteorol., p. 33, 2021, doi: 10.1007/s10546-021-00617-1.
H. Schmitz, “Schnek: A C++ library for the development of parallel simulation codes on regular grids,” Comput. Phys. Commun., vol. 226, pp. 151–164, 2018, doi: 10.1016/j.cpc.2017.12.023.
D. Koo et al., “An empirical study of I/O separation for burst buffers in HPC systems,” J. Parallel Distrib. Comput., vol. 148, pp. 96–108, 2021, doi: 10.1016/j.jpdc.2020.10.007.
C. Hollowell, J. Barnett, C. Caramarcu, W. Strecker-Kellogg, A. Wong, and A. Zaytsev, “Mixing HTC and HPC Workloads with HTCondor and Slurm,” J. Phys. Conf. Ser., vol. 898, no. 8, p. 8, 2017, doi: 10.1088/1742-6596/898/8/082014.
N. Malitsky et al., “Building near-real-time processing pipelines with the spark-MPI platform,” in 2017 New York Scientific Data Summit (NYSDS), 2017, pp. 1–8, doi: 10.1109/NYSDS.2017.8085039.
E. R. Cook, S. G. Shiyatov, V. S. Mazepa, A. Ecology, and U. Branch, Treering standardization and growth-trend estimation . In .: Cook E . Kairiukstis L . ( eds .), no. April 2016. Springer-Science+Business Media, B. V., 1990.
P. Singh, B. Khan, A. Vidyarthi, H. H. Alhelou, and P. Siano, “Energy-aware online non-clairvoyant scheduling using speed scaling with arbitrary power function,” Appl. Sci., vol. 9, no. 7, 2019, doi: 10.3390/app9071467.
Y. Monno, D. Kiku, M. Tanaka, and M. Okutomi, “Adaptive residual interpolation for color and multispectral image demosaicking,” Sensors (Switzerland), vol. 17, no. 12, pp. 1–21, 2017, doi: 10.3390/s17122787.
E. V. Konopatskiy and A. A. Bezditnyi, “Geometric modeling of multifactor processes and phenomena by the multidimensional parabolic interpolation method,” J. Phys. Conf. Ser., vol. 1441, no. 1, 2020, doi: 10.1088/1742-6596/1441/1/012063.
Z. Ye, W. Zhou, L. Zhang, Y. Ge, K. Xiao, and Y. Deng, “Multi-user mobile sequential recommendation: An efficient parallel computing paradigm,” in Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2018, pp. 2624–2633, doi: 10.1145/3219819.3220111.
R. Moreno et al., “Analysis of a New MPI Process Distribution for the Weather Research and Forecasting (WRF) Model,” Sci. Program., vol. 2020, no. i, p. 13, 2020, doi: 10.1155/2020/8148373.
DOI: http://dx.doi.org/10.18517/ijaseit.12.4.14628
Refbacks
- There are currently no refbacks.
Published by INSIGHT - Indonesian Society for Knowledge and Human Development