### Tuning of Extended-Resonance-Based Beamforming System for Visible Light Communication

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

N. Consulting, “Energy Savings Forecast of Solid-State Lighting in General Illumination Applications,” U.S. Dep. Energy Rep., no. August, pp. 2013–2014, 2014.

Y. Tanaka, S. Haruyama, and M. Nakagawa, “Wireless optical trasnsmissions with white colored LED for wireless home links,” IEEE Int. Symp. Pers. Indoor Mob. Radio Commun. PIMRC, vol. 2, pp. 1325–1329, 2000, doi: 10.1109/pimrc.2000.881634.

T. Deepa, H. Mathur, and K. A. Sunitha, “Spectrally efficient multicarrier modulation system for visible light communication,” Int. J. Electr. Comput. Eng., vol. 9, no. 2, p. 1184, 2019, doi: 10.11591/ijece.v9i2.pp1184-1190.

P. H. Pathak, X. Feng, P. Hu, and P. Mohapatra, “Visible Light Communication, Networking, and Sensing: A Survey, Potential and Challenges,” IEEE Commun. Surv. Tutorials, vol. 17, no. 4, pp. 2047–2077, 2015, doi: 10.1109/COMST.2015.2476474.

S. Cho, G. Chen, and J. P. Coon, “Securing visible light communication systems by beamforming in the presence of randomly distributed eavesdroppers,” IEEE Trans. Wirel. Commun., vol. 17, no. 5, pp. 2918–2931, 2018.

S. U. Rehman, S. Ullah, P. H. J. Chong, S. Yongchareon, and D. Komosny, “Visible light communication: a system perspective—overview and challenges,” Sensors, vol. 19, no. 5, p. 1153, 2019.

C. Danakis, M. Afgani, G. Povey, I. Underwood, and H. Haas, “Using a CMOS camera sensor for visible light communication,” 2012 IEEE Globecom Work. GC Wkshps 2012, pp. 1244–1248, 2012, doi: 10.1109/GLOCOMW.2012.6477759.

T.-H. Do and M. Yoo, “Visible light communication-based vehicle-to-vehicle tracking using CMOS camera,” IEEE Access, vol. 7, pp. 7218–7227, 2019.

K.-L. Hsu et al., “CMOS camera based visible light communication (VLC) using grayscale value distribution and machine learning algorithm,” Opt. Express, vol. 28, no. 2, pp. 2427–2432, 2020.

H. Nugroho, W. K. Wibowo, A. R. Annisa, and H. M. Rosalinda, “Deep learning for tuning Optical Beamforming Networks,” Telkomnika (Telecommunication Comput. Electron. Control., vol. 16, no. 4, 2018, doi: 10.12928/TELKOMNIKA.v16i4.8176.

H. Nugroho, “Tuning of Optical Beamforming Networks: A Deep Learning Approach.” 2015.

A. Meijerink et al., “Phased Array Antenna Steering using a Ring Resonator-based Optical Beam Forming Network,” in Proceedings of the IEEE Symposium on Communications and Vehicular Technology, Nov. 2006, pp. 7–12.

H. Schippers et al., “Broadband Conformal Phased Array with Optical Beamforming for Airborne Satellite Communication,” in Proceedings of the 2008 IEEE Aerospace Conference, Mar. 2008, pp. 1–17.

M. Elhefnawy, “Design and simulation of an analog beamforming phased array antenna,” Int. J. Electr. Comput. Eng., vol. 10, no. 2, pp. 1398–1405, 2020, doi: 10.11591/ijece.v10i2.pp1398-1405.

R. Maneiro-Catoira, J. Brégains, J. A. Garc’ia-Naya, and L. Castedo, “Analog beamforming using time-modulated arrays with digitally preprocessed rectangular sequences,” IEEE Antennas Wirel. Propag. Lett., vol. 17, no. 3, pp. 497–500, 2018.

Y. Ding, V. Fusco, A. Shitvov, Y. Xiao, and H. Li, “Beam index modulation wireless communication with analog beamforming,” IEEE Trans. Veh. Technol., vol. 67, no. 7, pp. 6340–6354, 2018.

D. G. Rabus, Integrated Ring Resonators: The Compendium. Berlin, Heidelberg: Springer, 2007.

A. Tombak and A. Mortazawi, “A Novel Low-Cost Beam-Steering Technique Based on the Extended-Resonance Power-Dividing Method,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 2, pp. 664–670, 2004, doi: 10.1109/TMTT.2003.822031.

R. H. Byrd, N. I. M. Gould, J. Nocedal, and R. A. Waltz, “An algorithm for nonlinear optimization using linear programming and equality constrained subproblems,” Math. Program., vol. 100, no. 1, pp. 27–48, 2004, doi: 10.1007/s10107-003-0485-4.

A. Wächter, “An Interior Point Algorithm for Large-Scale Nonlinear Optimization with Applications in Process Engineering,” PhD thesis, 2002.

P. T. Boggs and J. W. Tolle, “Sequential quadratic programming for large-scale nonlinear optimization,” J. Comput. Appl. Math., vol. 124, no. 1–2, pp. 123–137, 2000, doi: 10.1016/S0377-0427(00)00429-5.

O. D. Montoya, W. Gil-González, and A. Garces, “Sequential quadratic programming models for solving the OPF problem in DC grids,” Electr. Power Syst. Res., vol. 169, pp. 18–23, 2019.

A. Mehmood, A. Zameer, S. H. Ling, A. ur Rehman, and M. A. Z. Raja, “Integrated computational intelligent paradigm for nonlinear electric circuit models using neural networks, genetic algorithms and sequential quadratic programming,” Neural Comput. Appl., vol. 32, no. 14, pp. 10337–10357, 2020.

DOI: http://dx.doi.org/10.18517/ijaseit.12.4.14504

### Refbacks

- There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development