2D Numerical Model of Sediment Transport Under Dam-break Flow Using Finite Element

Qalbi Hafiyyan, Dhemi Harlan, Mohammad Bagus Adityawan, Dantje Kardana Natakusumah, Ikha Magdalena

Abstract


The potential hazard of dam construction is the possibility of dam failure. Dam failure will cause damage to property and the environment, as well as loss of human life. In addition, the dam-break flow also causes erosion and sediment transport which can affect the morphology of rivers around the dam. Dam-break flow analysis is needed to minimize the potential hazards of dam construction. Dam-break flow analysis can be done by performing numerical modeling. This study develops a numerical model using the Taylor Galerkin method. The Taylor Galerkin model is used in simulating the dam-break flow along with the sediment transport that occurs. Mathematically, this flow is generally expressed by the shallow water-Exner equations. The shallow water equations describe the movement of water, and the Exner equation describes the movement of sediment. The model will use the Galerkin method for spatial derivatives and the Taylor series approach for time derivatives in this study. A numerical filter by Hansen was also added to the model to overcome the instability of the model due to numerical oscillations. To determine the performance of the Taylor Galerkin model, simulation results were compared with experimental data and other numerical results from previous studies. The Taylor Galerkin model can simulate the dam-break flow with sediment movement over a movable bed well based on this study. Studies like this are needed to reduce the high risk of dam failure.

Keywords


Dam-break; movable bed; Hansen filter; Taylor Galerkin.

Full Text:

PDF

References


H. Qian, Z. Cao, H. Liu, and G. Pender, “New experimental dataset for partial dam-break floods over mobile beds,†J. Hydraul. Res., vol. 56, no. 1, pp. 124–135, 2018, doi: 10.1080/00221686.2017.1289264.

V. Hatje et al., “The environmental impacts of one of the largest tailing dam failures worldwide,†Sci. Rep., vol. 7, no. 1, pp. 1–13, 2017, doi: 10.1038/s41598-017-11143-x.

F. F. do Carmo et al., “Fundão tailings dam failures: the environment tragedy of the largest technological disaster of Brazilian mining in global context,†Perspect. Ecol. Conserv., vol. 15, no. 3, pp. 145–151, 2017, doi: 10.1016/j.pecon.2017.06.002.

L. H. Silva Rotta et al., “The 2019 Brumadinho tailings dam collapse: Possible cause and impacts of the worst human and environmental disaster in Brazil,†Int. J. Appl. Earth Obs. Geoinf., vol. 90, no. January, p. 102119, 2020, doi: 10.1016/j.jag.2020.102119.

V. E. Glotov, J. Chlachula, L. P. Glotova, and E. Little, “Causes and environmental impact of the gold-tailings dam failure at Karamken, the Russian Far East,†Eng. Geol., vol. 245, pp. 236–247, 2018, doi: 10.1016/j.enggeo.2018.08.012.

C. dos Santos Vergilio et al., “Immediate and long-term impacts of one of the worst mining tailing dam failure worldwide (Bento Rodrigues, Minas Gerais, Brazil),†Sci. Total Environ., vol. 756, p. 143697, 2021, doi: 10.1016/j.scitotenv.2020.143697.

K. T. O. Coimbra, E. Alcântara, and C. R. de Souza Filho, “An assessment of natural and manmade hazard effects on the underwater light field of the Doce River continental shelf,†Sci. Total Environ., vol. 685, pp. 1087–1096, 2019, doi: 10.1016/j.scitotenv.2019.06.127.

B. Spinewine and Y. Zech, “Small-scale laboratory dam-break waves on movable beds,†J. Hydraul. Res., vol. 45, no. SPEC. ISS., pp. 73–86, 2007, doi: 10.1080/00221686.2007.9521834.

X. Li, G. Li, and Y. Ge, “A new fifth-order finite differencewenoscheme for dam-break simulations,†Adv. Appl. Math. Mech., vol. 13, no. 1, pp. 58–82, 2020, doi: 10.4208/AAMM.OA-2019-0155.

P. W. Li and C. M. Fan, “Generalized finite difference method for two-dimensional shallow water equations,†Eng. Anal. Bound. Elem., vol. 80, pp. 58–71, 2017, doi: 10.1016/j.enganabound.2017.03.012.

Z. Wang, J. Zhu, and N. Zhao, “A new fifth-order finite difference well-balanced multi-resolution WENO scheme for solving shallow water,†Comput. Math. with Appl., vol. 80, no. 5, pp. 1380–1387, 2020, doi: 10.1016/j.camwa.2020.07.003.

H. M. Kalita, “A simple and efficient numerical model for simulating one dimensional dam break flows,†Int. J. Hydrol. Sci. Technol., vol. 10, no. 1, pp. 1–16, 2020, doi: 10.1504/IJHST.2020.104985.

H. Lee, “Implicit discontinuous Galerkin scheme for shallow water equations,†J. Mech. Sci. Technol., vol. 33, no. 7, pp. 3301–3310, 2019, doi: 10.1007/s12206-019-0625-2.

O. Seyedashraf and A. A. Akhtari, “Two-dimensional numerical modeling of dam-break flow using a new TVD finite-element scheme,†J. Brazilian Soc. Mech. Sci. Eng., vol. 39, no. 11, pp. 4393–4401, 2017, doi: 10.1007/s40430-017-0776-y.

D. Harlan, M. B. Adityawan, D. K. Natakusumah, and N. L. H. Zendrato, “Application of numerical filter to a Taylor Galerkin finite element model for movable bed dam break flows,†Int. J. GEOMATE, vol. 16, no. 57, pp. 209–216, 2019, doi: 10.21660/2019.57.70809.

G. Li, L. Song, and J. Gao, “High order well-balanced discontinuous Galerkin methods based on hydrostatic reconstruction for shallow water equations,†J. Comput. Appl. Math., vol. 340, pp. 546–560, 2018, doi: 10.1016/j.cam.2017.10.027.

O. Castro-Orgaz and H. Chanson, “Ritter’s dry-bed dam-break flows: positive and negative wave dynamics,†Environ. Fluid Mech., vol. 17, no. 4, pp. 665–694, 2017, doi: 10.1007/s10652-017-9512-5.

J. Fernández-Pato, M. Morales-Hernández, and P. García-Navarro, “Implicit finite volume simulation of 2D shallow water flows in flexible meshes,†Comput. Methods Appl. Mech. Eng., vol. 328, pp. 1–25, 2018, doi: 10.1016/j.cma.2017.08.050.

C. Di Cristo, M. Greco, M. Iervolino, R. Martino, and A. Vacca, “A remark on finite volume methods for 2D shallow water equations over irregular bottom topography,†J. Hydraul. Res., vol. 59, no. 2, pp. 337–344, 2020, doi: 10.1080/00221686.2020.1744752.

I. Kissami, M. Seaid, and F. Benkhaldoun, “Numerical assessment of criteria for mesh adaptation in the finite volume solution of shallow water equations,†Adv. Appl. Math. Mech., vol. 12, no. 2, pp. 503–526, 2020, doi: 10.4208/AAMM.OA-2019-0011.

Y. Lakhlifi, S. Daoudi, and F. Boushaba, “Dam-Break computations by a dynamical adaptive finite volume method,†J. Appl. Fluid Mech., vol. 11, no. 6, pp. 1543–1556, 2018, doi: 10.29252/jafm.11.06.28564.

N. Lely Hardianti Zendrato, D. Harlan, M. Bagus Adityawan, and D. Kardana Natakusumah, “1D Numerical modelling of dam break using finite element method,†MATEC Web Conf., vol. 270, p. 04022, 2019, doi: 10.1051/matecconf/201927004022.

R. Meurice and S. Soares-Frazão, “A 2D HLL-based weakly coupled model for transient flows on mobile beds,†J. Hydroinformatics, vol. 22, no. 5, pp. 1351–1369, 2020, doi: 10.2166/hydro.2020.033.

A. Hosseinzadeh-Tabrizi and M. Ghaeini-Hessaroeyeh, “Modelling of dam failure-induced flows over movable beds considering turbulence effects,†Comput. Fluids, vol. 161, pp. 199–210, 2018, doi: 10.1016/j.compfluid.2017.11.008.

I. Magdalena, M. B. Adityawan, and C. Jonathan, “Numerical model for dam break over a movable bed using finite volume method,†Int. J. GEOMATE, vol. 19, no. 71, pp. 98–105, 2020, doi: 10.21660/2020.71.27074.

J. Donea, “A Taylor–Galerkin method for convective transport problems,†Int. J. Numer. Methods Eng., vol. 20, no. 1, pp. 101–119, 1984, doi: 10.1002/nme.1620200108.

C. B. Jiang, M. Kawahara, and K. Kashiyama, “A Taylor-Galerkin-based finite element method for turbulent flows,†Fluid Dyn. Res., vol. 9, no. 4, pp. 165–178, 1992, doi: 10.1016/0169-5983(92)90003-F.

Q. Hafiyyan, M. B. Adityawan, D. Harlan, D. K. Natakusumah, and I. Magdalena, “Comparison of Taylor Galerkin and FTCS models for dam-break simulation,†IOP Conf. Ser. Earth Environ. Sci., vol. 737, no. 1, 2021, doi: 10.1088/1755-1315/737/1/012050.

M. B. Adityawan and H. Tanaka, “Bed stress assessment under solitary wave run-up,†Earth, Planets Sp., vol. 64, no. 10, pp. 945–954, 2012, doi: 10.5047/eps.2011.02.012.

Q. Hafiyyan, “Two Dimensional Modelling of Dam-break Flow Over Movable Bed Using Taylor Galerkin Finite Element Method,†Bandung Institute of Technology (ITB), Bandung, 2020.

B. Spinewine and H. Capart, “Intense bed-load due to a sudden dam-break,†J. Fluid Mech., vol. 731, pp. 579–614, 2013, doi: 10.1017/jfm.2013.227.

M. Iervolino, A. Leopardi, S. Soares-Frazão, C. Swartenbroekx, and Y. Zech, “2D-H Numerical Simulation of Dam-Break Flow on Mobile Bed with Sudden Enlargement,†River Flow 2010, 2010.




DOI: http://dx.doi.org/10.18517/ijaseit.11.6.14484

Refbacks

  • There are currently no refbacks.



Published by INSIGHT - Indonesian Society for Knowledge and Human Development