Removal of COD, TDS and Ammonia (NH3-N) in Produced Water with Electrochemical Using Aluminum (Al) and Iron (Fe) Electrode

Debi Anggun Sari, Muhammad Said, David Bahrin

Abstract


The activities of the oil and gas industry have the potential to cause pollution for the environment. This pollution can arise due to the production of petroleum processing, storage, and industries that use petroleum. Produced water is the largest liquid waste generated by these activities. The number will increase as long as a field where exploration continues to produce. In this study, an electrochemical method using Al-Fe electrodes with the addition of 1 g/L NaCl as an agent to provide chlorine as an oxidation mediator to accelerate NH3-N removal in produced water. Chemical reactions that occur during the electrochemical process as driving force, the reduction process is specific with conductive and active electrochemical substances then can manipulated with potential (voltage) and current time. A combination of an electrode is using aluminum and iron electrode plates with each thickness 0.1mm. The voltage variations during the process were 3, 6, 9, and 12V. This process is continuous, and samples are taken every 45, 90, 135, 180, and 225 minutes. The results showed percentage of COD removal is 53.14% from 430.25 mg/L to 201.6 mg/L, ammonia (NH3-N) removal is 91.64% from 17.71 mg/ L to 1,48 mg/L and TDS removal is 78.14% from 12670 mg/L to 2769 mg/L. 9V for 225 minutes during the electrochemical process is an optimum condition that can reduce contaminants in produced water, so the quality standards of Minister of Environment Regulation No.19 2010 are fulfilled. The electrochemical method was chosen to produce water treatment because the equipment required is simple and easy to operate and does not cause new waste.

Keywords


Produced water; electrochemical; filtration; aeration; ammonia.

Full Text:

PDF

References


E. T. Igunnu and G. Z. Chen, “Produced water treatment technologies,†Int. J. Low-Carbon Technol., vol. 9, no. 3, pp. 157–177, 2014, doi: 10.1093/ijlct/cts049.

R. K. Hommel, “Formation and physiological role of biosurfactants produced by hydrocarbon-utilizing microorganisms - Biosurfactants in hydrocarbon utilization,†Biodegradation, vol. 1, no. 2–3, pp. 107–119, 1990, doi: 10.1007/BF00058830.

D. H. Doyle and A. B. Brown, “Produced water treatment and hydrocarbon removal with organoclay,†SPE Annu. Tech. Conf. Proc., no. PI, pp. 501–512, 2000, doi: 10.2523/63100-ms.

B. L. Knudsen et al., “Meeting the zero discharge challenge for produced water,†Int. Conf. Heal. Saf. Environ. Oil Gas Explor. Prod., pp. 525–530, 2004, doi: 10.2118/0704-0071-jpt.

“(38799 ) Innovative Treating Processes Allow Steamflooding With Poor Quality Oil.pdf.†.

L. Li and Y. Liu, “Ammonia removal in electrochemical oxidation: Mechanism and pseudo-kinetics,†J. Hazard. Mater., vol. 161, no. 2–3, pp. 1010–1016, 2009, doi: 10.1016/j.jhazmat.2008.04.047.

M. Said, D. Bahraina, and R. F. Fitria, “Treatment of Produce Water with a Combination of Electrocoagulation with Iron (Fe) Electrodes and Adsorption Using Silica and Activated Carbon,†Int. J. Adv. Sci. Eng. Inf. Technol., vol. 11, no. 1, pp. 204–212, 2021, doi: 10.18517/ijaseit.11.1.12490.

P. Anugrah, “Pengolahan Air Terproduksi Dengan Metode Kombinasi Elektrokoagulasi Menggunakan Elektroda Alumunium (Al) Dan Besi (Fe) Dengan Perlakuan Filtrasi,†2020.

Surahman, Penurunan TDS, COD dan Minyak & Lemak Air Terproduksi (Produced Water) Pada Proses Pre-treatment Menggunakan Elektrokoagula di Industri Migas Sumatera Selatan. 2020.

M. M. Maroneze, L. Q. Zepka, J. G. Vieira, M. I. Queiroz, and E. Jacob-Lopes, “A tecnologia de remoção de fósforo: Gerenciamento do elemento em resíduos industriais,†Rev. Ambient. e Agua, vol. 9, no. 3, pp. 445–458, 2014, doi: 10.4136/1980-993X.

J. Yao, M. Zhou, D. Wen, Q. Xue, and J. Wang, “Electrochemical conversion of ammonia to nitrogen in non-chlorinated aqueous solution by controlling pH value,†J. Electroanal. Chem., vol. 776, pp. 53–58, 2016, doi: 10.1016/j.jelechem.2016.06.040.

F. Vitse, M. Cooper, and G. G. Botte, “On the use of ammonia electrolysis for hydrogen production,†J. Power Sources, vol. 142, no. 1–2, pp. 18–26, 2005, doi: 10.1016/j.jpowsour.2004.09.043.

E. P. Bonnin, E. J. Biddinger, and G. G. Botte, “Effect of catalyst on electrolysis of ammonia effluents,†J. Power Sources, vol. 182, no. 1, pp. 284–290, 2008, doi: 10.1016/j.jpowsour.2008.03.046.

E. Nuraini, T. Fauziah, and F. Lestari, “Penentuan nilai bod dan cod limbah cair inlet laboratorium pengujian fisis politeknik atk yogyakarta,†Integr. Lab J., vol. 07, no. 02, pp. 10–15, 2019.

R. P. Dewa, “Penanganan Baku Mutu Kualitas Air Limbah Produksi Atc dari Rumput Laut Eucheuma cottonii,†Ejournal Keminperin, vol. 12, no. 02, pp. 34–40, 2016, [Online]. Available: http://ejournal.kemenperin.go.id/bpbiam/article/view/1963.

T. Heikkinen et al., “Water Quality (/water/water- quality ),†Handb. Hydrol., no. Rosborg 2015, pp. 1–5, 2016.

Nurhasnah, L. K. Darusman, S. H. Sutjahjo, and B. W. Lay, “Efektivitas Pemberian Udara Berkecepatan Tinggi dalam Menurunkan Polutan Leachate TPA Sampah,†Forus Pascasarj., vol. 34, pp. 63–76, 2011.

N. Hidayat and A. Ariningrum, “Bioremidiasi Limbah Cair Sentra Industri Tempe Sanan Serta Perencanaan Unit Pengolahannya (Kajian Pengaturan Kecepatan Aerasi Dan Waktu Inkubasi) Bioremediation of Liquid Waste in Sanan Tempeh Industry and Its Unit Operation Planning ( Study on Aeration,†pp. 123–137.

E. Wardhani, M. Dirgawati, and K. P. Valyana, “Penerapan Metode Elektrokoagulasi Dalam Pengolahan Air Limbah Industri Penyamakan Kulit,†Semin. Ilm. Nas., pp. 1–16, 2012.

R. Susetyaningsih, E. Kismolo, and Prayitno, “Kajian Proses Elektrokoagulasi Untuk Pengolahan Limbah Cair,†Semin. Nas. IV SDM Tek. Nukl. Yogyakarta, pp. 339–344, 2008.

T. Hernaningsih, “Tinjauan Teknologi Pengolahan Air Limbah Industri Dengan Reviews of Electrocoagulation Process on Waste Water Treatment,†J. Rekayasa Lingkung., vol. 9, no. 1, pp. 31–46, 2016.

P. Cañizares, J. Lobato, R. Paz, M. A. Rodrigo, and C. Sáez, “Electrochemical oxidation of phenolic wastes with boron-doped diamond anodes,†Water Res., vol. 39, no. 12, pp. 2687–2703, 2005, doi: 10.1016/j.watres.2005.04.042.

Ã. Anglada, A. Urtiaga, I. Ortiz, D. Mantzavinos, and E. Diamadopoulos, “Boron-doped diamond anodic treatment of landfill leachate: Evaluation of operating variables and formation of oxidation by-products,†Water Res., vol. 45, no. 2, pp. 828–838, 2011, doi: 10.1016/j.watres.2010.09.017.

G. Pérez, J. Saiz, R. Ibañez, A. M. Urtiaga, and I. Ortiz, “Assessment of the formation of inorganic oxidation by-products during the electrocatalytic treatment of ammonium from landfill leachates,†Water Res., vol. 46, no. 8, pp. 2579–2590, 2012, doi: 10.1016/j.watres.2012.02.015.

A. Yulianto, L. Hakim, I. Purwaningsih, and V. A. Pravitasari, “Pengolahan Limbah Cair Industri Batik Pada Skala Laboratorium Dengan Menggunakan Metode Elektrokoagulasi,†J. Teknol. Lingkung. Univ. Trisakti, vol. 5, no. 1, pp. 6–11, 2009.




DOI: http://dx.doi.org/10.18517/ijaseit.12.1.14348

Refbacks

  • There are currently no refbacks.



Published by INSIGHT - Indonesian Society for Knowledge and Human Development