Expansion of Hand Hygiene Compliance and Decreasing Counterfeiting of Sanitation Products in the Era of the COVID-19 through Diversification and Standardization of Alcohol-Based Gel and Wipes Hand Sanitizer

N. Kusumawati, Pirim Setiarso, Agus Budi Santoso, Supari Muslim


The increasing cases of infection and the number of deaths triggered by COVID-19 make all prevention and treatment efforts urgent. Increased discipline to maintain hand hygiene must be sought immediately to break the chain of its spread. The availability of alcohol-based hand sanitizer products with various specifications is needed to ensure increased discipline in hand hygiene. This study carried out the diversification of alcohol-based hand sanitizers by varying the active ingredients and preparations. The effect of alcohol on the characteristics and anti-microbial activity of the gel and wipe hand sanitizer products was studied to obtain optimal benefits. The best hand sanitizer characteristics are shown in gel formulation 3 with bioethanol as an active ingredient, which has pH 5.88, good homogeneity, density 0.95 g/cm3, viscosity 2783.69 cPs, dispersibility 5.16 cm, adhesion 3.21 s, and dry time 29.27 s. While the best formulation of wipe hand sanitizer produced by formulation 3 made from bioethanol has a pH of 6.14, good homogeneity, density 0.86 g/cm3, viscosity 2.812 cPs, spreadability 15.34 cm, adhesion 1.92 s, and dry time 18.20 s. The biological activity test results of the two best hand sanitizer formulations, gel, and wipe preparations, showed good anti-microbial activity against Escherichia coli, Staphylococcus aureus, and Salmonella. In addition, the two preparations of hand sanitizer products were also detected to have good stability characteristics up to 4 weeks of storage time.


Hand sanitizer; alcohol; gel; wipe; antimicrobial.

Full Text:



A. P. Golin, D. Choi, and A. Ghahary, “Hand sanitizers: A review of ingredients, mechanisms of action, modes of delivery, and efficacy against coronaviruses,” Am. J. Infect. Control, vol. 48, no. 9, pp. 1062–1067, 2020, doi: 10.1016/j.ajic.2020.06.182.

WHO, “World Health Organisation. Guidelines on Hand Hygiene in Health Care: First Global Patient Safety Challenge Clean Care Is Safer Care,” World Health, p. 12, 2009.

A. Mahmood et al., “COVID-19 and frequent use of hand sanitizers; human health and environmental hazards by exposure pathways,” Sci. Total Environ., vol. 742, p. 140561, 2020, doi: 10.1016/j.scitotenv.2020.140561.

R. A. Leslie, S. S. Zhou, and D. R. Macinga, “Inactivation of SARS-CoV-2 by commercially available alcohol-based hand sanitizers,” Am. J. Infect. Control, vol. 00, pp. 1–2, 2020, doi: 10.1016/j.ajic.2020.08.020.

C. Osei-Asare et al., “Managing Vibrio cholerae with a local beverage: preparation of an affordable ethanol based hand sanitizer,” Heliyon, vol. 6, no. 1, p. e03105, 2020, doi: 10.1016/j.heliyon.2019.e03105.

O. M.J., The Merck Index, an Encyclopedia of Chemicals, Drugs, and Biologicals - NMR solvent data Charts. Whitehouse: Merck and Co., Inc, 2006.

Doe, Hand Sanitizers and Wipes on High Demand. Accra, Ghana: The General Telegraph, 2014.

W. Guan et al., “Clinical Characteristics of Coronavirus Disease 2019 in China,” N. Engl. J. Med., vol. 382, no. 18, pp. 1708–1720, 2020, doi: 10.1056/nejmoa2002032.

Public Health, Methanol Toxicological overview. England, 2016.

M. Ghannoum, R. S. Hoffman, J. B. Mowry, and V. Lavergne, “Trends in toxic alcohol exposures in the United States from 2000 to 2013: A focus on the use of antidotes and extracorporeal treatments,” Semin. Dial., vol. 27, no. 4, pp. 395–401, 2014, doi: 10.1111/sdi.12237.

S. Zakharov et al., “Czech mass methanol outbreak 2012: Epidemiology, challenges and clinical features,” Clin. Toxicol., vol. 52, no. 10, pp. 1013–1024, 2014, doi: 10.3109/15563650.2014.974106.

R. H. K. Thanacoody et al., “Management of poisoning with ethylene glycol and methanol in the UK: A prospective study conducted by the National Poisons Information Service (NPIS),” Clin. Toxicol., vol. 54, no. 2, pp. 134–140, 2016, doi: 10.3109/15563650.2015.1116044.

M. Rostrup et al., “The methanol poisoning outbreaks in Libya 2013 and Kenya 2014,” PLoS One, vol. 11, no. 3, pp. 1–10, 2016, doi: 10.1371/journal.pone.0152676.

R. Paasma, K. E. Hovda, A. Tikkerberi, and D. Jacobsen, “Methanol mass poisoning in Estonia: Outbreak in 154 patients,” Clin. Toxicol., vol. 45, no. 2, pp. 152–157, 2007, doi: 10.1080/15563650600956329.

J. H. Choi et al., “Neurological complications resulting from non-oral occupational methanol poisoning,” J. Korean Med. Sci., vol. 32, no. 2, pp. 371–376, 2017, doi: 10.3346/jkms.2017.32.2.371.

R. K. Law, S. Sheikh, A. Bronstein, R. Thomas, H. A. Spiller, and J. G. Schier, “Incidents of potential public health significance identified using national surveillance of US poison center data (2008-2012),” Clin. Toxicol., vol. 52, no. 9, pp. 958–963, 2014, doi: 10.3109/15563650.2014.953171.

M. A. K. L. Dissanayake, H. K. D. W. M. N. R. Divarathne, C. A. Thotawatthage, C. B. Dissanayake, G. K. R. Senadeera, and B. M. R. Bandara, “Dye-sensitized solar cells based on electrospun polyacrylonitrile (PAN) nanofibre membrane gel electrolyte,” Electrochim. Acta, vol. 130, pp. 76–81, 2014, doi: 10.1016/j.electacta.2014.02.122.

E. L. Larson, B. Cohen, and K. A. Baxter, “Analysis of alcohol-based hand sanitizer delivery systems: Efficacy of foam, gel, and wipes against influenza A (H1N1) virus on hands,” Am. J. Infect. Control, vol. 40, no. 9, pp. 806–809, 2012, doi: 10.1016/j.ajic.2011.10.016.

J. Wijaya, “Formulasi Sediaan Gel Hand Sanitizer Dengan Bahan Aktif Triklosan 1,5% dan 2%,” Calyptra, vol. 2, no. 1, pp. 1–14, 2013.

R. C Rowe, P. J Sheskey, and M. E Quinn, Handbook of Pharmacueical Excipients. 2009.

N. S. Wani, A. K. Bhalerao, V. P. Ranaware, and R. Zanje, “Formulation and evaluation of herbal sanitizer,” Int. J. PharmTech Res., vol. 5, no. 1, pp. 40–43, 2013.

E. L. Larson, “APIC guidelines for handwashing and hand antisepsis in health care settings,” AJIC Am. J. Infect. Control, vol. 23, pp. 251–269, 1995, doi: 10.1016/0196-6553(95)90070-5.

C. Pasquini, M. C. Hespanhol, K. A. M. L. Cruz, and A. F. Pereira, “Monitoring the quality of ethanol-based hand sanitizers by low-cost near-infrared spectroscopy,” Microchem. J., vol. 159, p. 10542, 2020, doi: 10.1016/j.microc.2020.105421.

A. Asngad and A. R. Bagas, “Kualitas pembersih Tangan Hand Sanitizer,” J. bioeksperimen, vol. 4, no. 2, pp. 61–70, 2018, doi: 10.23917/bioeksperimen.v4i2.6888.

A. Padsalgi, D. Jain, S. Bidkar, D. Harinarayana, and V. Jadhav, “Preparation and evaluation of hand rub disinfectant,” Asian J. Pharm., vol. 2, no. 1, pp. 18–21, 2008, doi: 10.4103/0973-8398.41559.

M. M. Nerandzic, C. Thriveen Sankar, P. Setlow, and C. J. Donskey, “A Cumulative spore killing approach: Synergistic sporicidal activity of dilute peracetic acid and ethanol at low pH against Clostridium difficile and Bacillus subtilis spores,” Open Forum Infect. Dis., vol. 3, no. 1, pp. 1–7, 2016, doi: 10.1093/ofid/ofv206.

Yusuf, N. Arfiyanti, and Fatmawaty, “Pengaruh Isopropil Myristat Sebagai Bahan Peningkat Penetrasi Terhadap Laju Difusi Krim Pemutih Ekstrak Etanol Daun Murbei (Morus alba.L),” J. Ilm. Manuntung, vol. 3, no. 1, pp. 43–51, 2017.

H. M. Al-Yousef and M. Amina, “Essential oil of Coffee arabica L. Husks: A brilliant source of antimicrobial and antioxidant agents.,” Biomed. Res., vol. 29, no. 1, pp. 174–180, 2018, doi: 10.4066/biomedicalresearch.29-17-867.

Y. Shimizu-Onda et al., “The virucidal effect against murine norovirus and feline calicivirus as surrogates for human norovirus by ethanol-based sanitizers,” J. Infect. Chemother., vol. 19, no. 4, pp. 779–781, 2013, doi: 10.1007/s10156-012-0516-2.

A. S. Milala, M. Sofyan, and M. Wahjudi, “The Formulation and Antibacterial Activity of Hand Sanitizer Gels Containing Lampes (Ocimum sanctum L.) Leaves Extract as An Active Compound,” Inatradmed. pp. 1--7, 2014.

K. Kulthanan, P. Maneeprasopchoke, S. Varothai, and P. Nuchkull, “The pH of antiseptic cleansers,” Asia Pac. Allergy, vol. 4, no. 1, p. 32, 2014, doi: 10.5415/apallergy.2014.4.1.32.

S. Titaley, Fatimawali, and W. A. Lolo, “Formulasi dan Uji Efektifitas Sediaan Gel Ekstra Etanol Daun Mangrove Api-Api (Avicennia marina) Sebagai Antiseptik Tangan,” Pharmacon, vol. 3, no. 2, pp. 99–106, 2014, doi: 10.35799/pha.3.2014.4781.

S. Wijana, E. P. Pratama, N. L. Rahmah, and M. Arwani, “Hand sanitizer formulation using orange peel essential oil,” IOP Conf. Ser. Earth Environ. Sci., vol. 524, no. 1, p. 012021, 2020, doi: 10.1088/1755-1315/524/1/012021.

M. A. Putri, M. E. Saputra, I. N. Amanah, and V. A. Fabiani, “Uji Sifat Fisik Sediaan Gel Handsanitizer Ekstrak Daun Pucuk Idat (Cratoxylum Glaucum),” Pros. Semin. Nas. Penelit. dan Pengabdi. Pada Masy., vol. 3, pp. 39–40, 2019, doi: doi.org/10.33019/snppm.v3i0.1309.

M. T. Islam, N. Rodríguez-Hornedo, S. Ciotti, and C. Ackermann, “Rheological characterization of topical carbomer gels neutralized to different pH,” Pharm. Res., vol. 21, no. 7, pp. 1192–1199, 2004, doi: 10.1023/B:PHAM.0000033006.11619.07.

A. F. Tsabitah and D. A. . Zulkarnain, A.K. Wahyuningsih, M.S.H. Nugrahaningsih, “Optimasi Carbomer, Propilen Glikol, dan Trietanolamin Dalam Formulasi Sediaan Gel Ekstrak Etanol Daun Kembang Bulan (Tithonia diversifolia),” Maj. Farm., vol. 16, no. 2, pp. 111–118, 2020, doi: 10.22146/farmaseutik.v16i2.45666.

R. Hirose et al., “Viscosity is an important factor of resistance to alcohol-based disinfectants by pathogens present in mucus,” Sci. Rep., vol. 7, no. 1, pp. 1–12, 2017, doi: 10.1038/s41598-017-13732-2.

WHO, WHO guidelines on hand hygeine in health care (advanced draft): Global Patient safety Challenge 2005-2006: Clean Care is Safer Care. Switzerland: WHO Press, 2006.

A. F. De Aceituno et al., “Ability of hand hygiene interventions using alcohol-based hand sanitizers and soap to reduce microbial load on farmworker hands soiled during harvest,” J. Food Prot., vol. 78, no. 11, pp. 2024–2032, 2015, doi: 10.4315/0362-028X.JFP-15-102.

S. Shalaby and M. Shukr, “The Influence of the Type and Concentration of Alcohol on the Rheological and Mucoadhesive Properties of Carpobol 940 Hydroalcoholic Gels.,” Der Pharm. Sin., vol. 2, no. 6, pp. 161–171, 2011.

S. Ulaen, Y. Banne, and R. Suatan, “Pembuatan Salep Anti Jerawat Dari Ekstrak Rimpang Temulawak (Curcuma Xanthorrhiza Roxb.),” J. Ilm. Farm. Poltekkes Manad., vol. 3, no. 2, pp. 45–49, 2012.

M. Sompie, S. E. Surtijono, J. H. W. Pontoh, and N. N. Lontaan, “The Effects of Acetic Acid Concentration and Extraction Temperature on Physical and Chemical Properties of Pigskin Gelatin,” Procedia Food Sci., vol. 3, pp. 383–388, 2015, doi: 10.1016/j.profoo.2015.01.042.

R. Riski, A. Nur, A. Akbar, and Nurindasari, “Formula krim pemutih dari fitosom ekstrak daun murbei (Morus alba L.),” JF FIK UINAM, vol. 5, no. 4, pp. 233–238, 2017, doi: 10.24252/.v5i4.4464.

N. W. R. Martyasari, Y. Andayani, and W. Hajrin, “Optimisation of hand sanitiser gel formula of Tekelan leaves extract (Chromolaena odorata) using simplex lattice design method,” Bali Med. J., vol. 8, no. 3, pp. 769–773, 2019, doi: 10.15562/bmj.v8i3.1598.

I. Hapsari, A. Rosyadi, and R. Wahyuningrum, “Optimasi Kombinasi Minyak Atsiri Bunga Kenanga Dengan Herba Kemangi Dalam Gel Sebagai Repelan Nyamuk Aedes aegypti Dengan Metode Simplex Lattice Design,” Universitas Muhammadiyah Purwwokerto, 2014.

N. Octavia, “Formulasi Sediaan Gel Hand Sanitizer Minyak Atsiri Pala (Myristica fragransHoutt.) : Uji Stabilitas Fisik Dan Uji Aktivitas Antibakteri Terhadap Bakteri Staphylococcus aureus,” Universitas Muhammadiyah Surakarta, 2016.

Z. Azkiya, H. Ariyani, and T. Nugraha, “Evaluasi Sifat Fisik Krim Ekstrak Jahe Merah (Zingiber officinale Rosc. var. rubrum) sebagai Antinyeri,” J. Curr. Pharm. Sci., vol. 1, no. 1, pp. 12–18, 2017.

M. E. Nuriani, M. Jufri, and Azizahwati, “Formulasi dan uji stabilitas fisik gel dari ekstrak methanol bekatul (Oryza sativa L.) sebagai inhibisi aktivitas tirosinase,” JFarmasi UI, vol. 4, no. 1, pp. 21–27, 2013.

E. S. Kuncari, “Evaluasi, uji stabilitas fisik dan sineresisi sediaan gel yang mengnadung minoksidil, apigenin dan perasan herba seledri (Apium graveolens L.,” Bul. Penelit. Kesehat., vol. 42, no. 4, pp. 213–222, 2014.

R. Hidayaturahmah and S. Harimurti, “Pengaruh Variasi Konsentrasi Karbomer Sebagai Gelling Agent Terhadap Viskositas dan pH Sediaan Gel Antiseptik Ekstrak Etanolik Daun Sirih Merah,” Fakltas Kedokt. dan Ilmu Kesehat., vol. 1, no. 5, pp. 1–8, 2016.

A. Asngad, A. B. R, and N. Nopitasari, “Kualitas Gel Pembersih Tangan (Handsanitizer) dari Ekstrak Batang Pisang dengan Penambahan Alkohol, Triklosan dan Gliserin yang Berbeda Dosisnya,” Bioeksperimen J. Penelit. Biol., vol. 4, no. 2, pp. 61–70, 2018, doi: 10.23917/bioeksperimen.v4i2.6888.

J. yi Wu, L. Gu, Z. lin Hua, X. qing Li, Y. Lu, and K. jian Chu, “Effects of Escherichia coli pollution on decomposition of aquatic plants: Variation due to microbial community composition and the release and cycling of nutrients,” J. Hazard. Mater., vol. 401, pp. 1–10, 2021, doi: 10.1016/j.jhazmat.2020.123252.

D. Millan-Sango, A. McElhatton, and V. P. Valdramidis, “Determination of the efficacy of ultrasound in combination with essential oil of oregano for the decontamination of Escherichia coli on inoculated lettuce leaves,” Food Res. Int., vol. 167, pp. 145–154, 2015, doi: 10.1016/j.foodres.2014.11.001.

L. Guo et al., “The antibacterial mechanism of ultrasound in combination with sodium hypochlorite in the control of Escherichia coli,” Food Res. Int., vol. 129, pp. 1–39, 2020, doi: 10.1016/j.foodres.2019.108887.

R. R. Elano, T. Kitagawa, M. L. Bari, S. Kawasaki, S. Kawamoto, and Y. Inatsu, “Comparison of the effectiveness of acidified sodium chlorite and sodium hypochlorite in reducing Escherichia coli,” Foodborne Pathog. Dis., vol. 7, no. 12, pp. 1481–1489, 2010, doi: 10.1089/fpd.2010.0595.

J. Li, T. Ding, X. Liao, S. Chen, X. Ye, and D. Liu, “Synergetic Effect Of Ultrasound and Slighltly Acidic Electrolyzed Water Againts Staphlococcus Aureus Evaluated By Flow Cytometry And Electron Microscopy,” Ultrason. Sonochemistry, vol. 38, pp. 711–719, 2017.

A. Pietrangelo, “E. coli Infection,” Healthline, vol. 7, no. 26, pp. 1–5, 2015.

WHO, “E. Coli,” World Health Organization, 2018. .

M. Ngajow, J. Abidjulu, and V. S. Kamu, “Pengaruh Antibakteri Ekstrak Kulit Batang Matoa (Pometia pinnata) terhadap Bakteri Staphylococcus aureus secara In vitro,” J. MIPA, vol. 2, no. 2, pp. 128–132, 2013, doi: 10.35799/jm.2.2.2013.3121.

S. Esposito, S. Noviello, and S. Leone, “Epidemiology and microbiology of skin and soft tissue infections,” Curr. Opin. Infect. Dis., vol. 29, pp. 109–115, 2016, doi: 10.1097/QCO.0000000000000239.

C. Yang et al., “Antibody-mediated protection against Staphylococcus aureus dermonecrosis: synergy of toxin neutralization and neutrophil recruitment,” J. Invest. Dermatol., pp. 1–42, 2020, doi: 10.1016/j.jid.2020.09.001.

A. J. McCarthy and J. A. Lindsay, “Genetic variation in staphylococcus aureus surface and immune evasion genes is lineage associated: Implications for vaccine design and host-pathogen interactions,” BMC Microbiol., vol. 10, p. 173, 2010, doi: 10.1186/1471-2180-10-173.

M. Z. David and R. S. Daum, “Community-associated methicillin-resistant Staphylococcus aureus: Epidemiology and clinical consequences of an emerging epidemic,” Clin. Microbiol. Rev., vol. 23, no. 3, pp. 616–687, 2010, doi: 10.1128/CMR.00081-09.

A. J. Mccarthy, J. A. Lindsay, and A. Loeffler, “Are all meticillin-resistant Staphylococcus aureus (MRSA) equal in all hosts? Epidemiological and genetic comparison between animal and human MRSA,” Vet. Dermatol., vol. 23, no. 4, pp. 53–54, 2012, doi: 10.1111/j.1365-3164.2012.01072.x.

I. Spiliopoulou and E. Petinaki, “Methicillin-resistant Staphylococcus aureus colonization and infection risks from companion animals: current perspectives,” Vet. Med. Res. Reports, vol. 6, pp. 373–382, 2015, doi: 10.2147/vmrr.s91313.

C. Ngassam-Tchamba et al., “In vitro and in vivo assessment of phage therapy against Staphylococcus aureus causing bovine mastitis,” J. Glob. Antimicrob. Resist., vol. 22, pp. 762–770, 2020, doi: 10.1016/j.jgar.2020.06.020.

A. N. F. de Melo et al., “Changes in thermo-tolerance and survival under simulated gastrointestinal conditions of Salmonella Enteritidis PT4 and Salmonella Typhimurium PT4 in chicken breast meat after exposure to sequential stresses,” Int. J. Food Microbiol., vol. 251, pp. 15–23, 2017, doi: 10.1016/j.ijfoodmicro.2017.03.022.

D. A. Vilte et al., “Reduced faecal shedding of Escherichia coli O157:H7 in cattle following systemic vaccination with γ-intimin C280 and EspB proteins,” Vaccine, vol. 29, no. 23, pp. 3962–3968, 2011, doi: 10.1016/j.vaccine.2011.03.079.

M. P. Stevens, P. M. van Diemen, F. Dziva, P. W. Jones, and T. S. Wallis, “Options for the control of enterhaemorrhagic Escherichia coli in ruminants,” Microbiology, vol. 148, pp. 3767–3778, 2002, doi: 10.1099/00221287-148-12-3767.

E. Kieckens, J. Rybarczyk, R. W. Li, D. Vanrompay, and E. Cox, “Potential immunosuppressive effects of Escherichia coli O157: H7 experimental infection on the bovine host,” BMC Genomics, vol. 17, no. 1, pp. 2–15, 2016, doi: 10.1186/s12864-016-3374-y.

C. A. Arias and B. E. Murray, “Antibiotic-Resistant Bugs in the 21st Century — A Clinical Super-Challenge,” N. Engl. J. Med., vol. 360, no. 5, pp. 439–443, 2009, doi: 10.1056/nejmp0804651.

P. Brown, “Salmonella outwits immune system,” Futurity, 2010.

DOI: http://dx.doi.org/10.18517/ijaseit.12.1.13940


  • There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development