Development of Active Solids Activator (Pellet) Using Local Culture from Badung River, Bali to Enhance Nitrification Process of Goat Wastewater

I Wayan Budiarsa Suyasa, Gede Adi Wiguna Sudiartha

Abstract


Goat urine wastewater that is disposed of without being processed will certainly cause environmental pollution. Therefore it is necessary to process the livestock waste. Processing goat urine into fertilizer needs to be done by converting ammonia to nitrate, or what is called the nitrification process. Nitrification takes place in two stages of oxidation, the first is the oxidation of ammonium to nitrite, and the second is the oxidation of nitrite to nitrate with the help of oxygen. The materials used in this study were (NH4)2SO4, K2HPO4, NaHCO3, Na2CO3, MgSO4.7H2O, FeSO4.7H2O, CaCl2.2H2O, ZnSO4, NaCl, H2SO4, NaNO2, KNO3, NH4Cl, Na2S2O3 (solution distilled water, filter paper, Rochell salts, Nessler reagent, N- (1-naphthyl) -ethylenediamine dihydrochloride (NED dihydrochloride) solution, sulfanilamide solution, sulfuric acid brucine solution, NPK fertilizer, glucose, urea fertilizer, TSP fertilizer, KCl fertilizer, cornflour, tofu dregs. Goat livestock waste, namely goat urine, was taken from one of the farms in North Denpasar, and sediment sampling was carried out in the Badung river next to the goat farm. According to the result, the best medium for ammonia oxidizers pellets was Ammonia Oxidizer Media II (media for pellet b) which was built of 10 grams of NPK fertilizer, 10 grams of glucose, and 5 grams of NH4Cl powder. Furthermore, the sample performed the highest nitrite removal with a pellet dose of 20% (w/v) (pellet b) and the measurement time at 18 hours, with an average nitrite concentration of three repetitions 2.3992 mg/L.

Keywords


Active suspension; goat livestock wastewater; nitrification; oxidizer media; pellet.

Full Text:

PDF

References


Y. Hu, H. Cheng, and S. Tao, “Environmental and human health challenges of industrial livestock and poultry farming in China and their mitigation,” Environment International. 2017, doi: 10.1016/j.envint.2017.07.003.

J. Lv, Y. Liu, J. Feng, Q. Liu, F. Nan, and S. Xie, “Nutrients removal from undiluted cattle farm wastewater by the two-stage process of microalgae-based wastewater treatment,” Bioresour. Technol., 2018, doi: 10.1016/j.biortech.2018.05.085.

K. H. Cho, J. O. Kim, S. Kang, H. Park, S. Kim, and Y. M. Kim, “Achieving enhanced nitrification in communities of nitrifying bacteria in full-scale wastewater treatment plants via optimal temperature and pH,” Sep. Purif. Technol., 2014, doi: 10.1016/j.seppur.2014.06.027.

L. Wang et al., “Response Characteristics of Nitrifying Bacteria and Archaea Community Involved in Nitrogen Removal and Bioelectricity Generation in Integrated Tidal Flow Constructed Wetland-Microbial Fuel Cell,” Front. Microbiol., 2020, doi: 10.3389/fmicb.2020.01385.

Y. Zhang et al., “Association of robust nitrogen removal with spatiotemporal nitrifying bacterial community dynamics in a new bioreactor for treatment of simulated livestock wastewater with high ammonia content,” J. Chem. Technol. Biotechnol., 2019, doi: 10.1002/jctb.5809.

M. B. Vanotti and P. G. Hunt, “Nitrification treatment of swine wastewater with acclimated nitrifying sludge immobilized in polymer pelletsVanotti, M. B., & Hunt, P. G. (2000). Nitrification treatment of swine wastewater with acclimated nitrifying sludge immobilized in polymer pellets.,” Trans. Am. Soc. Agric. Eng., 2000, doi: 10.13031/2013.2719.

I. G. A. L. Pradnyadari, I. W. B. Suyasa, and N. G. A. M. D. A. Suastuti, “Penyisihan Amonia, Nitrit Dan Nitrat Dengan Biofilter Menggunakan Plastik Bekas Sebagai Media Penopang Biofilm,” J. Media Sains, 2018.

N. Sudaryati, I. Kasa, and I. Budiarsa Suyasa, “Pemanfaatan Sedimen Perairan Tercemar Sebagai Bahan Lumpur Aktif Dalam Pengolahan Limbah Cair Industri Tahu,” Ecotrophic J. Environ. Sci., 2012.

S. Huang et al., “Effects of low-intensity ultrasound on nitrite accumulation and microbial characteristics during partial nitrification,” Sci. Total Environ., 2020, doi: 10.1016/j.scitotenv.2019.135985.

X. Zheng et al., “Inhibition of free ammonia to the granule-based enhanced biological phosphorus removal system and the recoverability,” Bioresour. Technol., 2013, doi: 10.1016/j.biortech.2013.08.100.

I. Obernberger and G. Thek, “Physical characterisation and chemical composition of densified biomass fuels with regard to their combustion behaviour,” Biomass and Bioenergy, 2004, doi: 10.1016/j.biombioe.2003.07.006.

R. Labbé, S. Paczkowski, V. Knappe, M. Russ, M. Wöhler, and S. Pelz, “Effect of feedstock particle size distribution and feedstock moisture content on pellet production efficiency, pellet quality, transport and combustion emissions,” Fuel, 2020, doi: 10.1016/j.fuel.2019.116662.

R. Cáceres, K. Malińska, and O. Marfà, “Nitrification within composting: A review,” Waste Management. 2018, doi: 10.1016/j.wasman.2017.10.049.

Z. Y. Sun, J. Zhang, X. Z. Zhong, L. Tan, Y. Q. Tang, and K. Kida, “Production of nitrate-rich compost from the solid fraction of dairy manure by a lab-scale composting system,” Waste Manag., 2016, doi: 10.1016/j.wasman.2016.03.002.

N. Ungureanu, V. Vladut, G. Voicu, M. N. Dinca, and B. S. Zabava, “Influence of biomass moisture content on pellet properties - Review,” 2018, doi: 10.22616/ERDev2018.17.N449.

T. Allegue, A. Arias, N. Fernandez-Gonzalez, F. Omil, and J. M. Garrido, “Enrichment of nitrite-dependent anaerobic methane oxidizing bacteria in a membrane bioreactor,” Chem. Eng. J., 2018, doi: 10.1016/j.cej.2018.04.134.

P. Han et al., “N2O and NOy production by the comammox bacterium Nitrospira inopinata in comparison with canonical ammonia oxidizers,” Water Res., 2021, doi: 10.1016/j.watres.2020.116728.

T. Hudakorn and N. Sritrakul, “Biogas and biomass pellet production from water hyacinth,” 2020, doi: 10.1016/j.egyr.2019.11.115.

A. A. Abdul-Rahman, N. Yusoff, and A. Abd-Rahman, “The effects of biomass binders and moisture content on the mechanical durability of rice husk pellets,” 2020, doi: 10.1088/1757-899X/736/5/052013.

M. Y. Patri, “Penentuan Kadar Ammonia (NH3) pada Limbah Cair K-36 dalam Rangka Pengendalian Pencemaran Lingkungan,” ALKIMIA J. Ilmu Kim. dan Terap., 2019, doi: 10.19109/alkimia.v2i2.2998.

A. Sepehri and M.-H. Sarrafzadeh, “Activity enhancement of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria in activated sludge process: metabolite reduction and CO2 mitigation intensification process,” Appl. Water Sci., 2019, doi: 10.1007/s13201-019-1017-6.

F. Huang, L. Pan, N. Lv, and X. Tang, “Characterization of novel Bacillus strain N31 from mariculture water capable of halophilic heterotrophic nitrification–aerobic denitrification,” J. Biosci. Bioeng., 2017, doi: 10.1016/j.jbiosc.2017.06.008.

T. T. H. Le, J. Fettig, and G. Meon, “Kinetics and simulation of nitrification at various pH values of a polluted river in the tropics,” Ecohydrol. Hydrobiol., 2019, doi: 10.1016/j.ecohyd.2018.06.006.

E. Hopkins, T. Sanvictores, and S. Sharma, “Physiology, Acid Base Balance,” Treasure Isl. StatPearls Publ., 2020.

P. S. Romer Present, A. Zare, and R. C. Cohen, “The changing role of organic nitrates in the removal and transport of NOx,” Atmos. Chem. Phys., 2020, doi: 10.5194/acp-20-267-2020.

S. K. Reddy and S. Balasubramanian, “Carbonic acid: Molecule, crystal and aqueous solution,” Chem. Commun., 2014, doi: 10.1039/c3cc45174g.

Y. Zou, Z. Hu, J. Zhang, H. Xie, C. Guimbaud, and Y. Fang, “Effects of pH on nitrogen transformations in media-based aquaponics,” Bioresour. Technol., 2016, doi: 10.1016/j.biortech.2015.12.079.

A. Anisa and W. Herumurti, “Pengolahan Limbah Domestik Menggunakan Moving Bed Biofilm Reactor (MBBR) dengan Proses Aerobik-Anoksik untuk Menurunkan Konsentrasi Senyawa Organik dan Nitrogen,” J. Tek. ITS, 2017, doi: 10.12962/j23373539.v6i2.25166.




DOI: http://dx.doi.org/10.18517/ijaseit.11.6.13744

Refbacks

  • There are currently no refbacks.



Published by INSIGHT - Indonesian Society for Knowledge and Human Development