Steroid Profiles of Wild Terror Green (Andinoacara rivulatus) Associated with Gonadal Histology in the Baba River, Ecuador

Juan Ortiz Tirado, Manjunatha Bangeppagari, Alfonso Benavides, Daysi Muñoz, Pedro Romero, Sang Joon Lee

Abstract


Native cichlids in Ecuador are represented by Andionoacara rivulatus and Cichlasoma festae mainly. These aquatic species are a fundamental part of the food chain of rural communities in the western subtropical region of Ecuador. For the first time, a detailed study on the gonadal development in A. rivulatus males and females was carried out, and the characterization of sex hormones present in their blood plasma from May 2019 to January 2020. Fish samples were captured in the multipurpose Baba River dam upstream of the Guayas River, Ecuador. Gonad and blood samples were collected for histological analysis and assaying of steroidal hormones such as 17β-estradiol and 11-ketotestosterone. The sex steroids were quantified by enzyme immunoassay (ELISA). As a result, the fish samples have asynchronous characteristics and show all development stages in testes and ovaries. The serological fluctuations show statistical differences (p <0.05) between the development stages, with low concentrations of estradiol and 11-KT. These results are somewhat related to the hydrological period of capture, where the temperature, luminosity, and rainfall play a fundamental role in the oogenesis and spermatogenesis in the captured fishes. The highest concentration of E2 is detected in female vitellogenesis stages and the highest concentration of 11-KT in the male spermatogenesis stage. These results confirm the fundamental role of these hormones in the key periods of gonadal development. In future studies, it is important to monitor the maturational hormone 17α, 20β-DHP, and the vitellogenin concentrations and thus understand the reproductive physiology of A. rivulatus.

Keywords


Andinoacara rivulatus; green terror; Gonad maturation; sex steroids; Baba river; Ecuador.

Full Text:

PDF

References


Z. Musilová, O. Říčan, K. Janko, J. Novák. Molecular phylogeny and biogeography of the Neotropical cichlid fish tribe Cichlasomatini (Teleostei: Cichlidae: Cichlasomatinae). Molecular Phylogenetics and Evolution, 46(2), 659–672, 2008. doi:10.1016/j.ympev.2007.10.011.

FISHBASE, 2020. https://www.fishbase.de/summary/Aequidens-rivulatus.html).

G. Alvarez-Mieles, K. Irvine, A. V. Griensven, M. Arias-Hidalgo, A. Torres, A. E. Mynett. Relationships between aquatic biotic communities and water quality in a tropical river–wetland system (Ecuador). Environmental Science & Policy, 34, 115–127, 2013. http://doi:10.1016/j.envsci.2013.01.011.

M. Arias-Hidalgo, G. Villa-Cox, A. V. Griensven, G. Solórzano, R. Villa-Cox, A. E. Mynett, P. Debels. A decision framework for wetland management in a river basin context: The “Abras de Mantequilla” case study in the Guayas River Basin, Ecuador. Environmental Science & Policy, 34, 103–114, 2013. http://doi:10.1016/j.envsci.2012.10.009.

Food and Agriculture Organization, FAO, 2020. http://www.fao.org/figis/servlet/SQServlet?file=/usr/local/tomcat/8.5.16/figis/webapps/figis/temp/hqp_4763616801375773071.xml&outtype=html.

H. Jamali, N. Ahmadifard, F. Noori, E. Gisbert, A. Estevez, N. Agh, N. Lecithin-enriched Artemia combined with inert diet and its effects on reproduction and digestive enzymes of Aequidens rivulatus. Aquaculture, 511, 734253, 2019. doi:10.1016/j.aquaculture.2019.734253.

A. Neissi, A., Rafiee, G., Nematollahi, M., Razavi, S. H., & Maniei, F. (2015). Influence of supplemented diet with Pediococcus acidilactici on non-specific immunity and stress indicators in green terror (Aequidens rivulatus) during hypoxia. Fish & Shellfish Immunology, 45(1), 13–18. doi:10.1016/j.fsi.2015.04.

A. H. Berg, L. Westerlund, P. E. Olsson. Regulation of Arctic char (Salvelinus alpinus) egg shell proteins and vitellogenin during reproduction and in response to 17β-estradiol and cortisol. General and Comparative Endocrinology, 135(3), 276–285, 2004. http://doi:10.1016/j.ygcen.2003.10.004.

J. Bobe, T. Nguyen, B. Jalabert. Targeted gene expression profiling in the Rainbow trout (Oncorhynchus mykiss) ovary during maturational competence acquisition and oocyte maturation. Biology of Reproduction, 71(1), 73–82, 2004. doi:10.1095/biolreprod.103.025205.

J. Ortiz Tirado, L. Valladares, D. Munoz, J. Caza, B. Manjunatha, R. R. Kundapur. Levels of 17β estradiol, vitellogenin, and prostaglandins during the reproductive cycle of Oreochromis niloticus. Latin American Journal of Aquatic Research, 45(5), 930–936, 2017. http://doi:10.3856/vol45-issue5-fulltext-8.

B. Levavi-Sivan, J. Biran, E. Fireman. Sex steroids are involved in the regulation of gonadotropin-releasing hormone and dopamine D2 receptors in female tilapia pituitary 1. Biology of Reproduction, 75(4), 642–650, 2006. doi:10.1095/biolreprod.106.051540.

E. Bonnet, A. Fostier, J. Bobe. Microarray-based analysis of fish egg quality after natural or controlled ovulation. BMC Genomics, 8(1), 2007. doi:10.1186/1471-2164-8-55.

J. Aizen, H. Kasuto, M. Golan, H. Zakay, B. Levavi-Sivan. Tilapia Follicle-Stimulating Hormone (FSH): Immunochemistry, stimulation by gonadotropin-releasing hormone, and effect of biologically active recombinant FSH on steroid secretion1, Biology of Reproduction, 76(4), 692–700, 2007. doi:10.1095/biolreprod.106.055822.

E. M. Donaldson. Manipulation of reproduction in farmed fish. Animal Reproduction Science, 42(1-4), 381–392, 1996. doi:10.1016/0378-4320(96)01555-2.

Regan. A revision of the fishes of the South-American cichlid genera Acara, Nannacara, Acaropsis, and Astronotus. Annals and Magazine of Natural History, Ser. 7, 15: 329-347, 1905.

R. Kner. Eine Uebersicht der ichthyologischen Ausbeute des Herrn Professors Dr. Mor. Wagner in Central-Amerika. Sitzungsber. Königlich Bayerische Akademie der Wissenschaften zu München 2:220-230, 1863.

R. Samaniego. Evaluación de parámetros de crecimiento e inmunidad en vieja azul Andinoacara rivulatus utilizando dietas con diferentes niveles proteicos y suplementadas con Astaxantina, 2015. (Tesis pregrado, Escuela Politécnica del Litoral). Recuperado de https://www.dspace.espol.edu.ec/bitstream/1234567 89/ 34064/1/20151SFMAR052801_2.PDF.

G. Marcillo, J. Landivar. Tecnología de producción de alevines monosexo de Tilapia, Primera edición. IEPI: 029318. ESPOL, 2008.

C. Miura, T. Miura, M. Yamashita, K. Yamauchi, Y. Nagahama. Hormonal induction of all stages of spermatogenesis in germ-somatic cell coculture from immature Japanese eel testis. Development, Growth and Differentiation, 38(3), 257–262, 1996. doi:10.1046/j.1440-169x.1996.t01-2-00004.x.

T. Miura, C. Miura, T. Ohta, M. R. Nader, T. Todo, K. Yamauchi. Estradiol-17β stimulates the renewal of spermatogonial stem cells in males. Biochemical and Biophysical Research Communications, 264(1), 230–234, 1999. doi:10.1006/bbrc.1999.1494.

M. A. Amer, T. Miura, C. Miura, K. Yamauchi. Involvement of sex steroid hormones in the early stages of spermatogenesis in Japanese huchen (Hucho perryi )1. Biology of Reproduction, 65(4), 1057–1066, 2001. doi:10.1095/biolreprod65.4.1057.

T. M. Kortner, E. Rocha, A. Arukwe. Previtellogenic oocyte growth and transcriptional changes of steroidogenic enzyme genes in immature female Atlantic cod (Gadus morhua L.) after exposure to the androgens 11-ketotestosterone and testosterone. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 152(3), 304–313, 2009. doi:10.1016/j.cbpa.2008.11.001.

T. Ohta, H. Miyake, C. Miura, H. Kamei, K. Aida, T. Miura. Follicle-stimulating hormone induces spermatogenesis mediated by androgen production in Japanese eel, Anguilla japonica1. Biology of Reproduction, 77(6), 970–977, 2007. doi:10.1095/biolreprod.107.062299.

T. Guellard, H. Kalamarz-Kubiak, E. Kulczykowska. Concentrations of melatonin, thyroxine, 17β-estradiol and 11-ketotestosterone in round goby (Neogobius melanostomus) in different phases of the reproductive cycle. Animal Reproduction Science, 204, 10–21, 2019. doi:10.1016/j.anireprosci.2019.02.014.

M. R. Ramallo, A. Birba, R. M. Honji, L. Morandini, R. G. Moreira, G. M. Somoza, M. Pandolfi. A multidisciplinary study on social status and the relationship between inter-individual variation in hormone levels and agonistic behavior in a Neotropical cichlid fish. Hormones and Behavior, 69, 139–151, 2015. doi:10.1016/j.yhbeh.2015.01.008.

R. J. Wilkinson, R. Longland, H. Woolcott, M. J. R. Porter. Effect of elevated winter–spring water temperature on sexual maturation in photoperiod manipulated stocks of rainbow trout (Oncorhynchus mykiss). Aquaculture, 309(1-4), 236–244, 2010. doi:10.1016/j.aquaculture.2010.08.023.

K. Coward, N. Bromage. Spawning frequency, fecundity, egg size and ovarian histology in groups of maintained upon two distinct food ration sizes from first-feeding to sexual maturity. Aquatic Living Resources, 12(1), 11–22, 1999. doi:10.1016/s0990-7440(99)80010-2.

P. J. Babin, J. Cerdà, E. Lubzens. (Eds.). (2007). The fish oocyte. doi:10.1007/978-1-4020-6235-3.

M. Carrillo, S. Zanuy, A. Felip, M. J. Bayarri, G. Molés, A. Gómez. Hormonal and environmental control of puberty in perciform fish. Annals of the New York Academy of Sciences, 1163(1), 49–59, 2009. doi:10.1111/j.1749-6632.2008.03645.x.

J.-F. Baroiller, Y. Guiguen, A. Fostier. Endocrine and environmental aspects of sex differentiation in fish, Cellular and Molecular Life Sciences, 55(7), 910, 1999. doi:10.1007/s000180050344.




DOI: http://dx.doi.org/10.18517/ijaseit.11.4.13724

Refbacks

  • There are currently no refbacks.



Published by INSIGHT - Indonesian Society for Knowledge and Human Development