Analysis of the Risk of Rubber Prices Using the ARCH-GARCH and VaR Methods on Farm Income in West Aceh District

Mustafa Usman, M. Yuzan Wardhana, Mauwaddah Istiqamah

Abstract


The fluctuating price of rubber is often detrimental to farmers because farmers generally cannot manage the timing of the sale to get a profitable selling price. High price fluctuations provide opportunities for traders to manipulate price information on farmers and cause farmers not to enjoy the higher true price. This research aims to see how risky the price is received by rubber farmers and its effect on farm income in West Aceh District. This study uses the ARCH-GARCH method and VaR calculations for price risk analysis and Simple Linear Analysis to analyze the effect of price on farm income. The results showed that the price risk received by rubber farmers was high, namely 41.699% during the one-year sales period. The regression results show that the price significantly affects the income of rubber farming in West Aceh Regency with a probability of 0.000. The value of R2 is 0.935, which means that rubber prices influence 93% of rubber farming income, and variables outside the model influence 7%. The selling price of rubber influences the income of rubber farming. If the price of rubber is low, the farmers cannot afford to pay for rubber maintenance, thus disrupting rubber productivity. Decreased productivity will reduce farm income in the West Aceh Regency, which means that the price of rubber influences 93% of rubber farming income, and 7% is influenced by variables outside the model.

Keywords


Price risk; rubber; farm income; ARCH-GARCH; VaR.

Full Text:

PDF

References


M. Mulyani, K. Kusnandar, and E. Antriyandarti, “Analysis of Indonesian Rubber Export Supply for 1995-2015,” J. Asian Financ. Econ. Bus., vol. 8, no. 1, pp. 093–102, 2021, doi: 10.13106/jafeb.2021.vol8.no1.093.

A. D. Nugroho, I. Y. Prasada, and Z. Lakner, “Performance and Forecast of Indonesian Rubber Exports To the Central European Countries,” OISAA J. Indones. Emas, vol. 5, no. 1, pp. 66–81, 2022, doi: 10.52162/jie.2022.005.01.8.

Ngatindriatun, A. Pujiati, and E. Soesilowati, “The Contribution of Rubber Commodity Toward Indonesian Export and Indonesian Rubber Export Prospect,” Int. Semin. FEUM, no. July, 2015.

Arifin B, “3345-19433-1-PB.pdf,” Manaj. Agribisnis, vol. 2, pp. 1–16, 2005.

U. Kashyap and N. Bothra, “Sino-US Trade and Trade War,” Manag. Econ. Res. J., vol. 5, p. 1, 2019, doi: 10.18639/merj.2019.879180.

P. Courtois and J. Subervie, “Farmer bargaining power and market information services,” Am. J. Agric. Econ., vol. 97, no. 3, pp. 953–977, 2014, doi: 10.1093/ajae/aau051.

M. D. . Simatupang, Pengantar Teori Terjemahan. Jakarta: Departemen Pendidikan Nasional, 2000.

F. Otten, J. Hein, H. Bondy, and H. Faust, “Deconstructing sustainable rubber production: contesting narratives in rural Sumatra,” J. Land Use Sci., vol. 15, no. 2–3, pp. 306–326, 2020, doi: 10.1080/1747423X.2019.1709225.

R. F. Engle, “Autoregressive Conditional Heteroscedacity with Estimates of variance of United Kingdom Inflation,journal of Econometrica, Volume 50, Issue 4 (Jul., 1982),987-1008.,” Econometrica. 1982.

V. O. Nur Laily, B. Warsito, and D. A. I Maruddani, “Comparison of ARCH / GARCH model and Elman Recurrent Neural Network on data return of closing price stock,” 2018, doi: 10.1088/1742-6596/1025/1/012103.

D. Wen, G. J. Wang, C. Ma, and Y. Wang, “Risk spillovers between oil and stock markets: A VAR for VaR analysis,” Energy Econ., 2019, doi: 10.1016/j.eneco.2019.02.005.

I. Lisdiani, S. I. Nikensari, and D. Irianto, “The effect of exchange rate, consumption, and GDP on Indonesian Rubber Export by main destination country,” J. Pendidik. Ekon. Perkantoran dan Akunt., vol. 7, no. 2, pp. 101–111, 2019.

U. Sekaran, “Metodologi Penelitian untuk Bisnis,” vol. 5, pp. 147–158, 2006.

Z.-Y. Wang, Y.-C. Lin, S.-J. Lee, and C.-C. Lai, “A Time Series Forecasting Method,” ITM Web Conf., 2017, doi: 10.1051/itmconf/20171203008.

A. Widarjono, “Aplikasi model ARCH kasus tingkat inflasi di Indonesia,” J. Ekon. Pembang., vol. 7, no. 1, pp. 71–82, 2002.

R. Engle, “GARCH 101: The use of ARCH/GARCH models in applied econometrics,” J. Econ. Perspect., vol. 15, no. 4, pp. 157–168, 2001, doi: 10.1257/jep.15.4.157.

A. Khamis, N. A. Abdul Razak, and M. A. A. Abdullah, “A robust vector autoregressive model for forecasting economic growth in Malaysia,” Malaysian J. Fundam. Appl. Sci., vol. 14, no. 3, pp. 382–385, 2018, doi: 10.11113/mjfas.v14n3.1021.

D. Rosadi, Ekonometrika dan Analisis Runtun Waktu Terapan dengan E-Views. Yogyakarta: Andi Offset, 2012.

D. Stockemer, Quantitative methods for the social sciences: A practical introduction with examples in SPSS and Stata. 2019.

I. S. Nugraha, A. Alamsyah, and S. Sahuri, “Effort to increase rubber farmers’ income when rubber low prices,” J. Perspekt. Pembiayaan dan Pembang. Drh., vol. 6, no. 3, pp. 345–352, 2018, doi: 10.22437/ppd.v6i3.5817.

Y. Erlina, D. Koestiono, N. Hanani, and Syafrial, “The influence of rubber price fluctuation on the performance of smallholder rubber plantation in central kalimantan, indonesia,” WSEAS Trans. Bus. Econ., vol. 16, no. 1, pp. 130–137, 2019.

C. W. Senarathne and W. Jianguo, “Testing for heteroskedastic mixture of ordinary least squares errors,” Rom. J. Econ. Forecast., vol. 23, no. 2, pp. 73–91, 2020.

Y. Chen, “Spatial autocorrelation approaches to testing residuals from least squares regression,” PLoS One, vol. 11, no. 1, pp. 1–19, 2016, doi: 10.1371/journal.pone.0146865.

T. B. Fomby, S. R. Johnson, and R. C. Hill, “Review of Ordinary Least Squares and Generalized Least Squares,” Adv. Econom. Methods, pp. 7–25, 1984, doi: 10.1007/978-1-4419-8746-4_2.

A. Aue, L. Horváth, and D. F. Pellatt, “Functional Generalized Autoregressive Conditional Heteroskedasticity,” J. Time Ser. Anal., 2017, doi: 10.1111/jtsa.12192.

T. Bollerslev, “Generalized autoregressive conditional heteroskedasticity,” J. Econom., pp. 307–327, 1986, doi: 10.1016/0304-4076(86)90063-1.

Y. Berry, “Perhitungan Value at Risk Dengan Pendekatan Variance-Covariance,” JURISMA J. Ris. Bisnis Manaj., vol. 7, no. 2, 2017, doi: 10.34010/jurisma.v7i2.458.

A. Wardhana, Y., Hakim, L., Fitra, K dan Baihaqi, “Risk Analysis of Vannamei Shrimp Commodity Price (Litopenaeus vannamei) in Aceh Besar Regency,” Int. J. Adv. Sci. Technol., vol. 29, no. 3, pp. 14606–14612, 2020, [Online]. Available: http://sersc.org/journals/index.php/IJAST/article/view/31948.

E. Rasmikayati, L. Sulistyowati, and B. R. Saefudin, “Risiko Produksi DAN Pemasaran Terhadap Pendapatan Petani Mangga: Kelompok mana yang Paling Berisiko,” Mimb. AGRIBISNIS J. Pemikir. Masy. Ilm. Berwawasan Agribisnis, vol. 3, no. 2, pp. 105–116, 2017, doi: 10.25157/ma.v3i2.564.

J. Qian, S. Ito, and Z. Zhao, “The effect of price support policies on food security and farmers’ income in China,” Aust. J. Agric. Resour. Econ., 2020, doi: 10.1111/1467-8489.12398.




DOI: http://dx.doi.org/10.18517/ijaseit.12.3.13637

Refbacks

  • There are currently no refbacks.



Published by INSIGHT - Indonesian Society for Knowledge and Human Development