Identification of Soybean Husk and Cow Manure Metabolites after Vermicomposting

Sri Mursiani Arifah, Maria Theresia Sri Budiastuti, Widyatmani Sih Dewi, - Supriyadi


Soybean husk and cow manure are organic wastes that can be used as raw materials for making organic fertilizers through vermicomposting technique. To explore the potential, it was necessary to identify the vermicompost metabolites produced. Gas Chromatography-Mass Spectroscopy (GC-MS), a powerful tool, was used to identify metabolites that characterize vermicompost. The purpose of this study was to identify vermicompost metabolites derived from different proportions of soybean husk and cow manure. Information obtained can guide alternative soybean husk and cow manure use, especially as raw materials for organic vermicompost fertilizer. The materials used in this study consisted of soybean husk, cow manure and lumbricus rubellus earthworms. This vermicomposting study was conducted using a Randomized Complete Block Design (RCBD) with five treatments and five replicates. The treatment details are: V1 = soybean husk (100%); V2 = cow manure (100%), V3 = soybean husk : cow manure (50%: 50%); V4 = soybean husk : cow manure (75%: 25%) and V5 = soybean husk : cow manure (25%: 75%). Metabolites were analyzed using GC-MS and the Least Significant Difference (LSD) test. Based on GC-MS analyses of all treatments (V1-V5), metabolites were identified consist of sugar compounds, amino acid compounds, organic acids, vitamins, and hormones. Consistent relationships between chromatograms of treatment V1-V5 were directly proportional to the LSD test results; treatment V5 consistently yielded the highest total area under the curve.


Vermicompost; soybean husk; cow manure; GC-MS.

Full Text:



S. K. Chaerun, “Tempeh Waste as a Natural, Economical Carbon and Nutrient Source: ED-XRF and NCS Study,” HAYATI J. Biosci., vol. 16, no. 3, pp. 120–122, 2009, doi: 10.4308/hjb.16.3.120.

P. N. Lim, T. Y. Wu, E. Y. Shyang Sim, and S. L. Lim, “The potential reuse of soybean husk as feedstock of Eudrilus eugeniae in vermicomposting,” J. Sci. Food Agric., vol. 91, no. 14, pp. 2637–2642, 2011, doi: 10.1002/jsfa.4504.

I. Cabezudo, M. R. Meini, C. C. Di Ponte, N. Melnichuk, C. E. Boschetti, and D. Romanini, “Soybean (Glycine max) hull valorization through the extraction of polyphenols by green alternative methods,” Food Chem., vol. 338, no. September 2020, p. 128131, 2021, doi: 10.1016/j.foodchem.2020.128131.

R. Abutheraa et al., “Antimicrobial Activities of Phenolic Extracts Derived from Seed Coats of Selected Soybean Varieties,” J. Food Sci., vol. 82, no. 3, pp. 731–737, 2017, doi: 10.1111/1750-3841.13644.

S. A. Bhat, J. Singh, and A. P. Vig, “Instrumental characterization of organic wastes for evaluation of vermicompost maturity,” J. Anal. Sci. Technol., vol. 8, no. 1, 2017, doi: 10.1186/s40543-017-0112-2.

M. Blouin, J. Barrere, N. Meyer, S. Lartigue, S. Barot, and J. Mathieu, Vermicompost significantly affects plant growth. A meta-analysis,” Agron. Sustain. Dev., vol. 39, no. 4, pp. 1–15, 2019, doi: 10.1007/s13593-019-0579-x.

X. Gong et al., “Spent mushroom substrate and cattle manure amendments enhance the transformation of garden waste into vermicomposts using the earthworm Eisenia fetida,” J. Environ. Manage., vol. 248, no. January, p. 109263, 2019, doi: 10.1016/j.jenvman.2019.109263.

A. R. Kolbe, M. Aira, M. Gómez-Brandón, M. Pérez-Losada, and J. Domínguez, “Bacterial succession and functional diversity during vermicomposting of the white grape marc Vitis vinifera v. Albariño,” Sci. Rep., vol. 9, no. 1, pp. 1–9, 2019, doi: 10.1038/s41598-019-43907-y.

J. Domínguez, M. Aira, A. R. Kolbe, M. Gómez-Brandón, and M. Pérez-Losada, “Changes in the composition and function of bacterial communities during vermicomposting may explain beneficial properties of vermicompost,” Sci. Rep., vol. 9, no. 1, pp. 1–11, 2019, doi: 10.1038/s41598-019-46018-w.

R. Roubalová, P. Procházková, A. Hanč, J. Dvořák, and M. Bilej, “Mutual interactions of E. andrei earthworm and pathogens during the process of vermicomposting,” Environ. Sci. Pollut. Res., 2019, doi: 10.1007/s11356-019-04329-5.

Z. Wu, B. Yin, X. Song, and Q. Zhao, “Effects of different lipid contents on growth of earthworms and the products during vermicomposting,” Waste Manag. Res., vol. 37, no. 9, pp. 934–940, 2019, doi: 10.1177/0734242X19861683.

K. Arumugam, S. Renganathan, O. O. Babalola, and V. Muthunarayanan, “Investigation on paper cup waste degradation by bacterial consortium and Eudrillus eugeinea through vermicomposting,” Waste Manag., vol. 74, pp. 185–193, 2018, doi: 10.1016/j.wasman.2017.11.009.

V. Srivastava, G. Goel, V. K. Thakur, R. P. Singh, A. S. Ferreira de Araujo, and P. Singh, “Analysis and advanced characterization of municipal solid waste vermicompost maturity for a green environment,” J. Environ. Manage., vol. 255, no. July 2019, p. 109914, 2020, doi: 10.1016/j.jenvman.2019.109914.

P. F. Rupani, A. Embrandiri, M. H. Ibrahim, M. Shahadat, S. B. Hansen, and N. N. A. Mansor, “Bioremediation of palm industry wastes using vermicomposting technology: its environmental application as green fertilizer,” 3 Biotech, vol. 7, no. 3, pp. 3–10, 2017, doi: 10.1007/s13205-017-0770-1.

K. Sharma and V. K. Garg, “Management of food and vegetable processing waste spiked with buffalo waste using earthworms (Eisenia fetida),” Environ. Sci. Pollut. Res., vol. 24, no. 8, pp. 7829–7836, 2017, doi: 10.1007/s11356-017-8438-2.

R. Paradelo, X. Vecino, A. B. Moldes, and M. T. Barral, “Potential use of composts and vermicomposts as low-cost adsorbents for dye removal: an overlooked application,” Environ. Sci. Pollut. Res., vol. 26, no. 21, pp. 21085–21097, 2019, doi: 10.1007/s11356-019-05462-x.

R. Negi and S. Suthar, “Degradation of paper mill wastewater sludge and cow dung by brown-rot fungi Oligoporus placenta and earthworm (Eisenia fetida) during vermicomposting,” J. Clean. Prod., vol. 201, pp. 842–852, 2018, doi: 10.1016/j.jclepro.2018.08.068.

N. Karmegam, P. Vijayan, M. Prakash, and J. A. John Paul, “Vermicomposting of paper industry sludge with cowdung and green manure plants using Eisenia fetida: A viable option for cleaner and enriched vermicompost production,” J. Clean. Prod., vol. 228, pp. 718–728, 2019, doi: 10.1016/j.jclepro.2019.04.313.

S. Paul, H. Kauser, M. S. Jain, M. Khwairakpam, and A. S. Kalamdhad, “Biogenic stabilization and heavy metal immobilization during vermicomposting of vegetable waste with biochar amendment,” J. Hazard. Mater., vol. 390, p. 121366, 2020, doi: 10.1016/j.jhazmat.2019.121366.

A. Yuvaraj, N. Karmegam, and R. Thangaraj, “Vermistabilization of paper mill sludge by an epigeic earthworm Perionyx excavatus: Mitigation strategies for sustainable environmental management,” Ecol. Eng., vol. 120, no. January, pp. 187–197, 2018, doi: 10.1016/j.ecoleng.2018.06.008.

V. Srivastava, S. K. Gupta, P. Singh, B. Sharma, and R. P. Singh, “Biochemical, physiological, and yield responses of lady’s finger (Abelmoschus esculentus L.) grown on varying ratios of municipal solid waste vermicompost,” Int. J. Recycl. Org. Waste Agric., vol. 7, no. 3, pp. 241–250, 2018, doi: 10.1007/s40093-018-0210-1.

X. Gong, S. Li, S. X. Chang, Q. Wu, L. Cai, and X. Sun, “Alkyl polyglycoside and earthworm (Eisenia fetida) enhance biodegradation of green waste and its use for growing vegetables,” Ecotoxicol. Environ. Saf., vol. 167, no. 111, pp. 459–466, 2019, doi: 10.1016/j.ecoenv.2018.10.063.

M. F. Dignac, S. Houot, and S. Derenne, “How the polarity of the separation column may influence the characterization of compost organic matter by pyrolysis-GC/MS,” J. Anal. Appl. Pyrolysis, vol. 75, no. 2, pp. 128–139, 2006, doi: 10.1016/j.jaap.2005.05.001.

S. Wang, D. Wang, Y. Tang, Y. Sun, D. Jiang, and T. Su, “Study of pyrolysis behavior of hydrogen-rich bark coal by TGA and Py-GC/MS,” J. Anal. Appl. Pyrolysis, vol. 128, no. January, pp. 136–142, 2017, doi: 10.1016/j.jaap.2017.10.016.

A. Kende, D. Portwood, A. Senior, M. Earll, E. Bolygo, and M. Seymour, “Target list building for volatile metabolite profiling of fruit,” J. Chromatogr. A, vol. 1217, no. 43, pp. 6718–6723, 2010, doi: 10.1016/j.chroma.2010.05.030.

M. Subhash Kumar, P. Rajiv, S. Rajeshwari, and R. Venckatesh, “Spectroscopic analysis of vermicompost for determination of nutritional quality,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 135, pp. 252–255, 2015, doi: 10.1016/j.saa.2014.07.011.

A. M. de Aquino et al., “Evaluation of molecular properties of humic acids from vermicompost by 13 C-CPMAS-NMR spectroscopy and thermochemolysis–GC–MS,” J. Anal. Appl. Pyrolysis, vol. 141, no. January, p. 104634, 2019, doi: 10.1016/j.jaap.2019.104634.

E. Benitez, R. Nogales, C. Elvira, G. Masciandaro, and B. Ceccanti, “Enzyme activities as indicators of the stabilization of sewage sludges composting with Eisenia foetida,” Bioresour. Technol., vol. 67, no. 3, pp. 297–303, 1999, doi: 10.1016/S0960-8524(98)00117-5.

K. Sharma and V. K. Garg, “Comparative analysis of vermicompost quality produced from rice straw and paper waste employing earthworm Eisenia fetida (Sav.),” Bioresour. Technol., vol. 250, pp. 708–715, 2018, doi: 10.1016/j.biortech.2017.11.101.

S. Saba et al., “Comparative analysis of vermicompost quality produced from brewers’ spent grain and cow manure by the red earthworm Eisenia fetida,” Bioresour. Technol., vol. 293, no. June, p. 122019, 2019, doi: 10.1016/j.biortech.2019.122019.

C. Devi and M. Khwairakpam, “Bioconversion of Lantana camara by vermicomposting with two different earthworm species in monoculture,” Bioresour. Technol., vol. 296, p. 122308, 2020, doi: 10.1016/j.biortech.2019.122308.

Z. Košnář et al., “Bioremediation of polycyclic aromatic hydrocarbons (PAHs) present in biomass fly ash by co-composting and co-vermicomposting,” J. Hazard. Mater., vol. 369, no. January, pp. 79–86, 2019, doi: 10.1016/j.jhazmat.2019.02.037.

X. Kang, W. Zhao, M. C. Dickwella Widanage, A. Kirui, U. Ozdenvar, and T. Wang, “CCMRD: a solid-state NMR database for complex carbohydrates,” J. Biomol. NMR, vol. 74, no. 4–5, pp. 239–245, 2020, doi: 10.1007/s10858-020-00304-2.

C. J. Gray et al., “Advancing Solutions to the Carbohydrate Sequencing Challenge,” J. Am. Chem. Soc., vol. 141, no. 37, pp. 14463–14479, 2019, doi: 10.1021/jacs.9b06406.

R. D. Cummings and D. F. Smith, “The selectin family of carbohydrate‐binding proteins: Structure and importance of carbohydrate ligands for cell adhesion,” BioEssays, vol. 14, no. 12, pp. 849–856, 1992, doi: 10.1002/bies.950141210.

Q. Yang, D. Zhao, and Q. Liu, “Connections Between Amino Acid Metabolisms in Plants: Lysine as an Example,” Front. Plant Sci., vol. 11, no. June, pp. 1–8, 2020, doi: 10.3389/fpls.2020.00928.

V. R. Young, “Alfred E . Harper Symposium on Emerging Aspects of Amino Acid Metabolism Adult Amino Acid Requirements : The Case for a Major Revision in Current Recommendations1,” J. Nutr., vol. 124, no. 8 Suppl, pp. 1517S-1523S, 1994, doi: 1517S-1523S.

P. Fürst and P. Stehle, “What are the essential elements needed for the determination of amino acid requirements in humans?,” J. Nutr., vol. 134, no. 6 SUPPL., pp. 1558–1565, 2004, doi: 10.1093/jn/134.6.1558s.

R. Amir, G. Galili, and H. Cohen, “The metabolic roles of free amino acids during seed development,” Plant Sci., vol. 275, pp. 11–18, 2018, doi: 10.1016/j.plantsci.2018.06.011.

Q. Q. Yang et al., “A connection between lysine and serotonin metabolism in rice endosperm,” Plant Physiol., vol. 176, no. 3, pp. 1965–1980, 2018, doi: 10.1104/pp.17.01283.

J. López-Bucio, M. F. Nieto-Jacobo, V. Ramírez-Rodríguez, and L. Herrera-Estrella, “Organic acid metabolism in plants: From adaptive physiology to transgenic varieties for cultivation in extreme soils,” Plant Sci., vol. 160, no. 1, pp. 1–13, 2000, doi: 10.1016/S0168-9452(00)00347-2.

M. T. Javed et al., “Deciphering the growth, organic acid exudations, and ionic homeostasis of Amaranthus viridis L. and Portulaca oleracea L. under lead chloride stress,” Environ. Sci. Pollut. Res., vol. 25, no. 3, pp. 2958–2971, 2018, doi: 10.1007/s11356-017-0735-2.

X. Li, L. Ma, Y. Li, L. Wang, and L. Zhang, “Endophyte infection enhances accumulation of organic acids and minerals in rice under Pb 2+ stress conditions,” Ecotoxicol. Environ. Saf., vol. 174, no. February, pp. 255–262, 2019, doi: 10.1016/j.ecoenv.2019.02.072.

O. A. Palacios, Y. Bashan, and L. E. de-Bashan, “Proven and potential involvement of vitamins in interactions of plants with plant growth-promoting bacteria-an overview,” Biol. Fertil. Soils, vol. 50, no. 3, pp. 415–432, 2014, doi: 10.1007/s00374-013-0894-3.

K. Šípošová, K. Kollárová, D. Lišková, and Z. Vivodová, “The effects of IBA on the composition of maize root cell walls,” J. Plant Physiol., vol. 239, no. December 2018, pp. 10–17, 2019, doi: 10.1016/j.jplph.2019.04.004.

M. M. Arab, A. Yadollahi, M. Eftekhari, H. Ahmadi, M. Akbari, and S. S. Khorami, “Modeling and Optimizing a New Culture Medium for in Vitro Rooting of G×N15 Prunus Rootstock using Artificial Neural Network-Genetic Algorithm,” Sci. Rep., vol. 8, no. 1, pp. 1–18, 2018, doi: 10.1038/s41598-018-27858-4.

A. Karakeçili, S. Korpayev, H. Dumanoğlu, and S. Alizadeh, “Synthesis of indole-3-acetic acid and indole-3-butyric acid loaded zinc oxide nanoparticles: Effects on rhizogenesis,” J. Biotechnol., vol. 303, no. July, pp. 8–15, 2019, doi: 10.1016/j.jbiotec.2019.07.004.

D. K. Kaczmarek, T. Kleiber, L. Wenping, M. Niemczak, Ł. Chrzanowski, and J. Pernak, “Transformation of Indole-3-butyric Acid into Ionic Liquids as a Sustainable Strategy Leading to Highly Efficient Plant Growth Stimulators,” ACS Sustain. Chem. Eng., vol. 8, no. 3, pp. 1591–1598, 2020, doi: 10.1021/acssuschemeng.9b06378.



  • There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development