The Growth and Carcass Quality Performance of Ciayumajakuning Muscovy Ducks First Offspring

Dini Widianingrum, Tuti Widjastuti, Asep Anang, Iwan Setiawan


Muscovy ducks are meat-producing poultry, and meat quality is affected by growth performance and carcass quality. This research aimed to investigate the growth performance and carcass quality of the best Muscovy ducks and determine the regions from which Muscovy ducks with the best performance and carcass quality. This study used 120 Muscovy ducks aged 1-6 months (60 drakes and 60 ducks) collected from the regencies in this study (15 drakes and ducks each). An experimental method was conducted in a factorial, completely randomized design. The first factor was the Muscovy ducks’ place of origin Ciayumajakuning (Cirebon, Indramayu, Majalengka, and Kuningan), and the second factor was the sex of Muscovy ducks (drake and duck) with three replicates for each treatment. The result showed that the interaction in Muscovy ducks’ growth performance was non-existent. Muscovy ducks from Kuningan had the most significant growth performance and carcass quality from Cirebon, Indramayu, and Majalengka. It was evident from the qualities of drake vs. duck Muscovy ducks, such as feed consumption (21,92 vs. 14,11 kg), body weight (3,48 vs. and 2,14 kg), mortality (3,17% vs. 3,53), feed conversion (6.59 vs. 6.30). Additionally, Muscovy ducks had 71,26% carcass percentage, 80,85% edible cuts, 19,15% inedible cuts, 19,53% meat protein, 6,89% meat fat and 72,58% meat fatty acid. Conclusively, Kuningan Muscovy ducks had better growth performance and carcass quality than those of Cirebon, Indramayu, and Majalengka.


Growth performance; carcass quality; Muscovy ducks; Ciayumajakuning.

Full Text:



J. Gamboa, “The modern ontological natures of the Cairina moschata (Linnaeus, 1758) duck. Cases from Perú, the northern hemisphere, and digital communities,” Anthropozoologica, 2019, doi: 10.5252/anthropozoologica2019v54a13.

Y. A. Yakubu and D. W. Schutte, “Caregiver attributes and socio-demographic determinants of caregiving burden in selected low-income communities in cape town, South Africa,” J. Compassionate Heal. Care, 2018, doi: 10.1186/s40639-018-0046-6.

A. Castillo et al., “Performance of slow-growing male muscovy ducks exposed to different dietary levels of quebracho tannin,” Animals, 2020, doi: 10.3390/ani10060979.

R. Liu et al., “Microbiological identification and analysis of waterfowl livers collected from backyard farms in Southern China,” Journal of Veterinary Medical Science. 2018, doi: 10.1292/jvms.17-0452.

M. H. Tamzil, L. Lestari, and B. Indarsih, “Measurement of several qualitative traits and body size of Lombok Muscovy Ducks (Cairina moshcata) in semi-intensive rearing,” Math. Oper. Res., 2018, doi: 10.14710/jitaa.43.4.333-342.

J. Downs, R. Loraamm, J. Anderson, J. Perry, and J. Bullock, “Habitat Use and Behaviours of Introduced Muscovy Ducks (Cairina moschata) in Urban and Suburban Environments,” Suburb. Sustain., 2017, doi: 10.5038/2164-0866.5.1.1028.

D. Suci M, Z. Fitria, and R. Mutia, “Meat Fatty Acid and Cholesterol Content of Native Indonesian Muscovy Duck Fed with Rice Bran in Traditional Farm,” Anim. Prod., vol. 19, no. 1, pp. 37–45, 2017.

D. Widianingrum, T. Widjastuti, A. Anang, and I. Setiawan, “Technical characteristics of Muscovy duck (Cairina Moschata) in Ciayumajakuning, West Java Indonesia,” J. Agric. Sci. - Sri Lanka, 2020, doi: 10.4038/jas.v15i2.8814.

H. Tamsil, “Genetic Resource of Muscovy Duck (Cairina moschata): Profile and Potential Production as Meat Producer,” Indones. Bull. Anim. Vet. Sci., 2018, doi: 10.14334/wartazoa.v28i3.1839.

T. Gidenne, H. Garreau, L. Drouilhet, C. Aubert, and L. Maertens, “Improving feed efficiency in rabbit production, a review on nutritional, technico-economical, genetic and environmental aspects,” Animal Feed Science and Technology. 2017, doi: 10.1016/j.anifeedsci.2017.01.016.

A. Yakubu, L. Dahloum, A. J. Shoyombo, and U. M. Yahaya, “Modelling hatchability and mortality in muscovy ducks using automatic linear modelling and artificial neural network,” J. Indones. Trop. Anim. Agric., 2019, doi: 10.14710/jitaa.44.1.65-76.

S. El. Abdel-Hamid and E. M. Abdelfattah, “Effect of different dietary protein levels on some behavioral patterns and productive performance of muscovy duck,” Adv. Anim. Vet. Sci., 2020, doi: 10.17582/JOURNAL.AAVS/2020/8.6.661.667.

P. Chisembe, L. J. Banda, and J. Tanganyika, “Effect of duck-rice-azolla integration on growth performance and carcass quality of native malawian muscovy ducks,” Livest. Res. Rural Dev., 2020.

F. A. M. Hassan, E. M. Roushdy, A. W. Zaglool, M. A. Ali, and I. E. El-Araby, “Growth performance, carcass traits and economic values of pekin, muscovy, and mulard ducks,” Slov. Vet. Res., 2018, doi: 10.26873/SVR-663-2018.

I. Belghit et al., “Black soldier fly larvae meal can replace fish meal in diets of sea-water phase Atlantic salmon (Salmo salar),” Aquaculture, 2019, doi: 10.1016/j.aquaculture.2018.12.032.

E. Baéza, “Nutritional requirements and feed management of meat type ducks,” World’s Poultry Science Journal. 2016, doi: 10.1017/S004393391500272X.

A. Yakubu, “Characterisation of the local Muscovy duck in Nigeria and its potential for egg and meat production,” Worlds. Poult. Sci. J., 2013, doi: 10.1017/S0043933913000937.

Ismoyowati, E. Tugiyanti, M. Mufti, and D. Purwantini, “Sexual dimorphism and identification of single nucleotide polymorphism of growth hormone gene in muscovy duck,” J. Indones. Trop. Anim. Agric., 2017, doi: 10.14710/jitaa.42.3.167-174.

M. K. Ewuola, M. O. Akinyemi, W. A. Hassan, and B. S. Folaniyi, “Morphological Diversity of Muscovy Duck in Humid Zone of Nigeria,” J. Agric. Ecol. Res. Int., 2020, doi: 10.9734/jaeri/2020/v21i230131.

L. Drouilhet et al., “Impact of selection for residual feed intake on production traits and behavior of mule ducks,” Poult. Sci., 2016, doi: 10.3382/ps/pew185.

S. Petermann, E. Moors, J. Baumgarte, and C. Sürie, “Animal welfare plan lower saxony - work results poultry,” Berl. Munch. Tierarztl. Wochenschr., 2017, doi: 10.2376/0005-9366-16053.

R. Ngouana Tadjong, K. Jean Raphaël, Y. Mane Divine Doriane, K. Yves, E. Nounamo Longston Wilfried, and T. Alexis, “Growth Performance of Muscovy Ducks (<i>Cairina moschata</i>) Fed Palm Kernel Meal Based Diets,” Open J. Anim. Sci., 2020, doi: 10.4236/ojas.2020.103021.

M. O. Abd-Elsamee, M. R. Ibrahim, M. M. Hassan, and E. S. Ashmawy, “Leaves of moringa, rosemary and olive as a phytogenic feed additives in muscovy duck diets,” Pakistan J. Biol. Sci., 2019, doi: 10.3923/PJBS.2019.1.7.

M. F. A. Farghly, K. M. Mahrose, Z. Ullah, Z. U. Rehman, and C. Ding, “Influence of swimming time in alleviating the deleterious effects of hot summer on growing Muscovy duck performance,” Poult. Sci., 2017, doi: 10.3382/ps/pex207.

I. Ismoyowati, I. H. Sulistyawan, S. Mugiyono, and R. Rosidi, “Carcass Production and Single Nucleotide Polymorphism Adipocyte Fatty Acid Binding Protein (A-Fabp) Gene on Cairina moschata,” 2019, doi: 10.1088/1755-1315/372/1/012067.

A. B. Omojola, “Carcass and organoleptic characteristics of duck meat as influenced by breed and sex,” Int. J. Poult. Sci., 2007, doi: 10.3923/ijps.2007.329.334.

V. Pasichnyi, N. Bozhko, V. Tischenko, and Y. Kotliar, “Development of Cooked Smoked Sausage on The Basis of Muskovy Duck Meat,” Food Sci. Technol., vol. 12, no. 4, Jan. 2019, doi: 10.15673/fst.v12i4.1207.

K. Steczny, D. Kokoszynski, Z. Bernacki, R. Wasilewski, and M. Saleh, “Growth performance, body measurements, carcass composition and some internal organ characteristics in young pekin ducks,” South African J. Anim. Sci., 2017, doi: 10.4314/sajas.v47i3.16.

G. Ayuningtyas, J. Jakaria, R. Rukmiasih, and C. Budiman, “Produktivitas Entok Betina dengan Pemberian Pakan Terbatas Selama Periode Pertumbuhan,” J. Ilmu Produksi dan Teknol. Has. Peternak., 2016, doi: 10.29244/jipthp.4.2.280-285.

J. P. F. Rufino, F. G. G. Cruz, R. D. Melo, J. C. Feijó, J. L. Damasceno, and A. P. G. Costa, “Performance, carcass traits and economic availability of muscovy ducks fed on different nutritional plans in different housing densities,” Rev. Bras. Cienc. Avic., 2017, doi: 10.1590/1806-9061-2017-0471.

D. Kokoszyński, H. Arpášová, C. Hrnčar, J. Żochowska-Kujawska, M. Kotowicz, and M. Sobczak, “Carcass characteristics, chemical composition, physicochemical properties, texture, and microstructure of meat from spent Pekin ducks,” Poult. Sci., 2020, doi: 10.1016/j.psj.2019.09.003.

E. Baeza, P. Chartrin, and M. D. Bernadet, “Effect of lipid content on oxidation susceptibility of duck meat,” Eur. Poult. Sci., 2018, doi: 10.1399/eps.2018.241.

E. E. Onbaşilar and S. Yalçin, “Fattening performance and meat quality of Pekin ducks under different rearing systems,” World’s Poultry Science Journal. 2017, doi: 10.1017/S004393391700099X.

R. Magalhães, A. Sánchez-López, R. S. Leal, S. Martínez-Llorens, A. Oliva-Teles, and H. Peres, “Black soldier fly (Hermetia illucens) pre-pupae meal as a fish meal replacement in diets for European seabass (Dicentrarchus labrax),” Aquaculture, 2017, doi: 10.1016/j.aquaculture.2017.04.021.

A. Tavernier, S. Davail, K. Ricaud, M. D. Bernadet, and K. Gontier, “Genes involved in the establishment of hepatic steatosis in Muscovy, Pekin and mule ducks,” Mol. Cell. Biochem., 2017, doi: 10.1007/s11010-016-2850-7.

D. M. Suci, Z. Fitria, and R. Mutia, “Meat Fatty Acid and Cholesterol Content of Native Indonesian Muscovy Duck Fed with Rice Bran in Traditional Farm,” Anim. Prod., 2017, doi: 10.20884/1.jap.2017.19.1.586.

X. Chen, X. Du, J. Shen, L. Lu, and W. Wang, “Original Research: Effect of various dietary fats on fatty acid profile in duck liver: Efficient conversion of short-chain to long-chain omega-3 fatty acids,” Exp. Biol. Med., 2017, doi: 10.1177/1535370216664031.



  • There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development