Characteristics of Carbonate Facies and Depositional Environment of Tapak Formation in the Ajibarang Area, Central Java, Indonesia

- Praptisih, Purna Sulastya Putra, Septriono Hari Nugroho

Abstract


The limestone of Tapak Formation is well exposed in the Ajibarang area and its surroundings, Central Java, Indonesia. Very intensive mining activity is a very serious threat to this limestone. Hitherto, the geological study on this limestone is still very limited. The objective of this study was to investigate the characteristics of these limestone facies and their sedimentation. This research consists of field and laboratory (petrography and micropaleontology) analysis. The results showed that the limestone of the Tapak Formation consisted of three facies: planktonic packstone, algal foraminifera packstone, and foraminifera algal packstone. Planktonic packstone facies are composed of bioclastic fragments in a micro matrix. The fragments were dominated by planktonic foraminifera consisting of a genus of Globigerina, Globigerinoides, Globorotalia, and Orbulina. Benthic foraminifera and radiolarians were also identified. Sedimentation from planktonic packstone facies was estimated to occur in the deep marine environment. Algal foraminiferal packstone facies are composed of bioclastic fragments in a micro matrix. Large algae and large foraminifera dominated the fragments. Algae were from the type of red algae, consisting of Lithophyllum, Corallina, and Rhodolite. Foraminiferal algal packstone and algal foraminiferal packstone that were observed in the studied area were characterized by the abundance of large foraminifera and interpreted to be deposited in the upper reef slope. We interpreted that the limestone in the study area was deposited in the upper reef slope to the lower reef slope environments. We hope that the information we provided here is useful for petroleum system study in Central Java, Indonesia.

Keywords


Limestone; facies; sedimentation; Tapak formation Ajibarang Indonesia.

Full Text:

PDF

References


L. Fauzielly and A. H. Hamdani, “Analisis lingkungan pengendapan batugamping berdasarkan distribusi unsur kimia di daerah Cidora, Kecamatan Ajibarang, Kabupaten Banyumas, Jawa Tengah,†Bull. Sci. Contrib. Geol., vol. 13, pp. 202–212, 2015.

M. Djuri, H. Samodra, T. C. Amin, and S. Gafoer, “Geological Map of Purwokerto and Tegal Sheet, Java, scale 1: 100.000,†Bandung, 1996.

M. H. A. Amin and B. K. Susilo, “Lingkungan pengendapan Formasi Tapak daerah Samudra, Kabupaten Banyumas, Jawa Tengah,†in Applicable Innovation of Engineering and Science Research, 2019, pp. 252–259.

Y. Rizal, W. D. Santoso, A. Rudyawan, R. A. Tampubolon, and A. A. Nurfarhan, “Sedimentary facies and hydrocarbon reservoir potential of sand flat in the upper part of Tapak Formation in Banyumas Area, Central Java,†Ris. Geol. dan Pertamb., vol. 28, pp. 251–263, 2018.

S. G. Ma’arif and M. I. Novian, “Mekanisme dan Dinamika Sedimentasi Formasi Tapak Bagian Bawah di Daerah Kalisalak, Kecamatan Margasari, Kabupaten Tegal, Provinsi Jawa Tengah,†2015.

G. Kontakiotis, L. Moforis, V. Karakitsios, and A. Antonarakou, “Sedimentary facies analysis, reservoir characteristics and paleogeography significance of the Early Jurassic to Eocene Carbonates in Epirus (Ionian Zone, Western Greece),†J. Mar. Sci. Eng., vol. 8, no. 9, 2020.

E. S. Sallam, M. M. Afife, M. Fares, A. . van Loon, and D. A. Ruban, “Sedimentary facies and diagenesis of the Lower Miocene Rudeis Formation (southwestern offshore margin of the Gulf of Suez, Egypt) and implications for its reservoir quality,†Mar. Geol., vol. 413, pp. 48–70, 2019.

R. Atmadibrata, D. Muslim, R. F. Hirnawan, and A. Abdurrokhim, “Characteristics of Arun carbonate reservoir and its implication to optimize the most potential gas resource zone in Arun gas field, Aceh, Indonesia,†Indones. J. Geosci., vol. 6, pp. 209–222, 2019.

F. L. Valencia and J. C. Laya, “Deep-burial dissolution in and Oligocene-Miocene giant carbonate reservoir (Perla Limestone), Gulf of Venezuela basin: implications on microporosity development,†Mar. Pet. Geol., vol. 113, pp. 104–144, 2020.

R. Chelaru, E. Sasaran, T. Tamas, R. Balc, I. . Bucur, and G. Ples, “Middle Miocene carbonate facies with rhodoliths from the NW Transylvanian Basin (Valenii Somcutei Cave, Romania),†Facies, vol. 65, no. 4, 2019.

S. Banerjee, S. Khanolkar, and P. K. Saraswati, “Facies and depositional settings of the Middle Eocene-Oligocene carbonates in Kutch,†Geodin. Acta, vol. 30, no. 1, pp. 119–136, 2018.

M. Ingals, C. M. Frantz, K. E. Snell, and E. J. Trower, “Carbonate facies-specific stable isotope data record climate, hydrology, and microbal communities in Great Salt lake, UT,†Geobiology, vol. 18, no. 5, pp. 566–593, 2020.

B. Dyer, A. C. Maloof, S. J. Purkis, and P. M. (Mitch) Harris, “Quantifying the relationship between water depth and carbonate facies,†Sediment. Geol., vol. 373, pp. 1–10, 2018.

W. Ran et al., “Formation and evolution of the Tertiary carbonate reefs in the Madura Strait Basin of Indonesia,†Geology, vol. 37, pp. 47–61, 2019.

R. Fifariz, X. Janson, C. Kerans, and B. Sapiie, “Carbonate-shelf evolution during the Oligocene to Early Miocene: insights from shelf architecture, lithofacies, and depositional models of the Kujung Formation, offshore East Java, Indonesia,†J. Sediment. Res., vol. 90, no. 8, pp. 796–820, 2020.

E. G. Sirodj, E. Sunardi, B. G. Adhiperdana, and I. Haryanto, “Shallow carbonate for underground gas storage in West Java, Indonesia,†J. Pet. Technol., vol. 10, no. 2, pp. 19–25, 2020.

A. Jansen, A. Wizemann, A. Klicpera, D. W. Satari, H. Westphal, and T. Mann, “Sediment composition and facies of coral reef islands in the Spermonde Archipelago, Indonesia,†Front. Mar. Sci., vol. 4, no. 144, 2017.

D. A. Utami, L. Reuning, and S. Y. Cahyarini, “Satellite- and field-based facies mapping of isolated carbonate platforms from the Kepulauan Seribu Complex, Indonesia,†Depos. Rec., vol. 4, pp. 255–273, 2018, doi: 10.1002/dep2.47.

D. A. Utami and A. R. Hakim, “Carbonate sedimentology of Seribu Islands patch reef complex: a literature review,†in IOP Conference Series: Earth and Environmental Science, 2018, p. 012013.

D. A. Utami, L. Reuning, M. Hallenberger, and S. Y. Cahyarini, “The mineralogic and isotopic fingerprint of equatorial carbonates: Kepulauan Seribu, Indonesia,†Int. J. Earth Sci., 2021, doi: https://doi.org/10.1007/s00531-020-01968-9.

D. P. Gold, F. Baillard, R. Rathore, Z. Zhang, and S. Arbi, “An intergrated biostratigraphic, seismic reservoir characterisation and numerical stratigraphic forward modelling approach to imaging drowned carbonate platforms; a case study from eastern Indonesia,†Geol. Soc. London Spec. Publ., vol. 509, 2020, doi: https://doi.org/10.1144/SP509-2019-88.

E. Silalahi, Y. Putri, R. Sitinjak, D. Miraza, and M. S. T. Ozza, “Seismic interpretation and depositional model of Kais-Lower Klasafet reservoirs in Walio Area of kepala burung PSC, Salawati basing, West Papua, Indonesia,†J. Phys. Conf. Ser., vol. 1363, 2018.

K.K.Ting, Y.E.Tan, E.Chiew, E. L. Lee, A.N.Azudin, and N. A. Ishak, “Assessing controls on isolated carbonate platform development in Central Luconia, NW Borneo, from a regional 3D seismic facies and geomorphology investigation,†Geol. Soc. Spec. Publ., vol. 509, 2020.

D. P. Gold, P. M. Burges, and M. K. BouDagher-Fadel, “Carbonate drowning successions of the Bird’s Head, Indonesia,†Facies, vol. 63, no. 25, 2017, doi: doi.org/10.1007/s10347-017-0506-z.

N. Muchsin et al., “Miocene Hydrocarbon System of the Southern Central Java Region,†in Proceedings of the 31st Annual Convention Indonesian Association of Geologists, 2002, pp. 58–67.

P. S. Putra and S. H. Nugroho, “Distribusi Foraminifera Bentonik Hidup dalam Hubungannya dengan Sedimen Dasar Laut di Selat Sumba, Nusa Tenggara Timur,†J. Geol. dan Sumberd. Miner., vol. 20, pp. 17–26, 2019.

M. M. Key Jr, A. M. Smith, N. J. Phillips, and J. S. Forrester, “Effect of removal of organic material on stable isotope ratios in skeletal carbonate from taxonomic groups with complex mineralogies,†Rapid Commun. Mass Spectrom., vol. 34, no. 20, p. e8901, 2020.

E. Lo Giudice Cappelli and W. E. Austin, “Size matters: analyses of benthic foraminiferal assemblages across differing size fractions,†Front. Mar. Sci., vol. 6, no. 752, 2019.

A. Damanik, K. A. Maryunani, S. H. Nugroho, and P. S. Putra, “Rekonstruksi perubahan suhu permukaan laut berdasarkan kumpulan foraminifera di Perairan Utara Papua, Samudra Pasifik,†Bull. Geol., vol. 4, no. 1, pp. 496–504, 2020.

R. D. W. Ardi et al., “Last Deglaciation—Holocene Australian-Indonesian Monsoon Rainfall Changes Off Southwest Sumba, Indonesia,†Atmosphere (Basel)., vol. 11, no. 932, 2020, doi: 10.3390/atmos11090932.

J. J. Wilson, Carbonate Facies in Geologic History. New York: Springer-Verlag, 1975.

E. Flügel, Microfacies of Carbonate Rocks: Analysis, Interpretation and Application. Berlin, Heidelberg: Springer-Verlag, 2014.

P. Praptisih and K. Kamtono, “Carbonate Facies and Sedimentation of the Klapanunggal Formation in Cibinong, West Java,†Indones. J. Geosci., vol. 1, pp. 175–183, 2014.

E. Mohammadi, “Sedimentary facies and paleoenvironmental interpretation of the Oligocene larger-benthic-foraminifera-dominated Qom Formation in the northeastern margin of the Tethyan Seaway,†Paleoworld, 2020, doi: doi.org/10.1016/j.palwor.2020.06.005.

J. L. Wray, Calcareous Algae (Developments in Palaeontology and Stratigraphy). Elsevier Science, 1977.

W. Renema, “Large benthic foraminifera in low-light environments,†in Mesophotic coral ecosystems, Springer, Cham., 2019, pp. 553–561.

M. S. Siregar, P. Praptisih, Kamtono, and M. M. Mukti, “Reef facies of the Wonosari Formation, south of Central Java,†Ris. Geol. dan Pertamb., vol. 14, pp. 1–17, 2004.

P. Praptisih, “Fasies, lingkungan pengendapan dan sifat fisik (kesarangan dan kelulusan) batuan karbonat Formasi Parigi di daerah Pangkalan Karawang, Jawa Barat,†J. Geol. dan Sumberd. Miner., vol. 17, pp. 205–215, 2016.

P. Praptisih, M. S. Siregar, K. Kamtono, M. Hendrizan, and P. S. Putra, “Fasies dan lingkungan pengendapan batuan karbonat formasi Parigi di daerah Palimanan, Cirebon,†Ris. Geol. dan Pertamb., vol. 22, pp. 33–43, 2012.

J. Reolid, C. Betzler, V. Singler, C. Stange, and S. Lindhorst, “Facies variability in mixed carbonate-siliciclastic platform slopes (Miocene),†Facies, vol. 63, no. 11, 2017, doi: https://doi.org/10.1007/s10347-016-0489-1.

L. Consorti and F. Koroglu, “Maastrichtian-Paleocene larger foraminifera biostratigraphy and facies of the Sahinkaya Member (NE Sakarya Zone, Turkey):insights into the Eastern Pontides arc sedimentary cover,†J. Asian Earth Sci., vol. 183, 2019, doi: https://doi.org/10.1016/j.jseaes.2019.103965.

J. C. Laya et al., “Controls on Neogene carbonate facies and stratigraphic architecture of an isolated carbonate platform – the Caribbean island of Bonaire,†Mar. Pet. Geol., vol. 94, pp. 1–18, 2018.

A. Janßen, A. Wizemann, A. Klicpera, D. Y. Satari, H. Westphal, and T. Mann, “Sediment Composition and Facies of Coral Reef Islands in the Spermonde Archipelago, Indonesia,†Front. Mar. Sci., vol. 4, no. 144, May 2017, doi: 10.3389/fmars.2017.00144.

S. Martin and J. M. Hall-Spencer, “Effects of Ocean Warming and Acidification on Rhodolith/Maërl Beds,†in Rhodolith/Maërl Beds: A Global Perspective, R. Riosmena-Rodríguez, W. Nelson, and J. Aguirre, Eds. Springer, Cham., 2017, pp. 55–85.

J. Aguirre, J. C. Braga, and D. Bassi, “Rhodoliths and rhodolith beds in the rock record,†in Rhodolith/Maërl beds: A global perspective, Springer, Cham., 2017, pp. 105–138.

J. Aguirre et al., “Middle eocene rhodoliths from tropical and mid-latitude regions,†Diversity, vol. 12, no. 3, 2020, doi: 10.3390/d12030117.

F. Rendina et al., “Distribution and Characterization of Deep Rhodolith Beds off the Campania Coast (SW Italy, Mediterranean Sea),†Plants, vol. 9, no. 985, pp. 1–17, 2020, doi: doi:10.3390/plants9080985.

R. C. Pereira and R. da Gama Bahia, “Rhodoliths: Can its importance on a large scale be promoted by a microscale and invisible phenomenon?,†Front. Mar. Sci., 2021, doi: doi:http://dx.doi.org/10.3389/fmars.2021.630517.

Z. Wei et al., “Increased irradiance availability mitigates the physiological performance of species of the calcifying green macroalga Halimeda in response to ocean acidification,†Algal Res., vol. 48, p. 101906, 2020.

Z. Wei et al., “Effects of plant growth regulators on physiological performances of three calcifying green macroalgae Halimeda species (Bryopsidales, Chlorophyta),†Aquat. Bot., vol. 161, p. 103186, Feb. 2020, doi: 10.1016/j.aquabot.2019.103186.

K. E. Peach, M. S. Koch, P. L. Blackwelder, D. Guerrero-Given, and N. Kamasawa, “Primary utricle structure of six Halimeda species and potential relevance for ocean acidification tolerance,†Bot. Mar., vol. 60, no. 1, pp. 1–11, 2017.

K. E. Peach, M. S. Koch, P. L. Blackwelder, and C. Manfrino, “Calcification and photophysiology responses to elevated pCO2 in six Halimeda species from contrasting irradiance environments on Little Cayman Island reefs,†J. Exp. Mar. Bio. Ecol., vol. 486, pp. 114–126, Jan. 2017, doi: 10.1016/j.jembe.2016.09.008.

C. McNicholl et al., “Ocean acidification effects on calcification and dissolution in tropical reef macroalgae,†Coral Reefs, vol. 39, no. 6, pp. 1635–1647, 2020.

A. Prathep, R. Kaewsrikhaw, J. Mayakun, and A. Darakrai, “The effects of light intensity and temperature on the calcification rate of Halimeda macroloba,†J. Appl. Phycol., vol. 30, no. 6, pp. 3405–3412, 2018.

B. C. V. Narvarte, W. A. Nelson, and M. Y. Roleda, “Inorganic carbon utilization of tropical calcifying macroalgae and the impacts of intensive mariculture-derived coastal acidification on the physiological performance of the rhodolith Sporolithon sp.,†Environ. Pollut., vol. 266, Nov. 2020, doi: 10.1016/j.envpol.2020.115344.




DOI: http://dx.doi.org/10.18517/ijaseit.12.5.13290

Refbacks

  • There are currently no refbacks.



Published by INSIGHT - Indonesian Society for Knowledge and Human Development