The Potential of Agricultural Land Drought Using Normalized Difference Drought Index in Ciampel Subdistrict Karawang Regency

Iffa Faliha Dzakiyah, Ratna Saraswati, Fajar Dwi Pamungkas


Karawang Regency, known as the National Rice Reserve, is experiencing drought on farmland. The Regional Disaster Management Agency (BPBD) of Karawang Regency noted that drought in 14 villages spread across three sub-districts in Karawang Regency has developed in 2019, such as Ciampel sub-district. Rice production decreased in 2015-2019 by 19 percent. The purpose of this study is to analyze the drought area of agricultural land using the Normalized Difference Drought Index (NDDI) and analyze the relationship between agricultural land drought and rainfall in Ciampel Sub-District, Karawang Regency in 2015 and 2019. The study used Landsat 8 OLI/TIRS in August-September 2015 and 2019. Agricultural land drought using the NDDI method is the ratio between the Normalized Difference Vegetation Index (NDVI) and the Normalized Difference Wetness Index (NDWI). The results showed a map of the distribution of agricultural land drought in Ciampel Sub-district, Karawang Regency during 2015 and 2019 with three classes of agricultural land drought (dry, rather dry, normal). The total area of agricultural drought in August 2015 was 11,166 hectares and as of September 2019 was 3,119 hectares. While as of September 2015, it was 3,086 hectares, and in 2019 was 3,158 hectares. The drought that hit Ciampel Sub-District in September 2019 hit almost all areas and dry areas in the middle eastern part of the Ciampel Sub-District. The drought, which is included in the classification of dry that hit irrigated rice field, was 20.19 %. Meanwhile, the rainfed rice field was 32.79%, and in dryland was 24.83%.


Agricultural land drought; NDVI; NDWI; NDDI; land use.

Full Text:



Mishra, A.K., Singh, V.P., 2010. A review of drought concepts. J. Hydrol, doi: 10.1016/j.jhydrol.2010.07.012.

Wu, J., Liu, Z., Yao, H., Chen, X., Chen, X., Zheng, Y., He, Y., 2018. Impacts of reservoir operations on multi-scale correlations between hydrological drought and meteorological drought. J. Hydrol. doi: 10.1016/j.jhydrol.2018.06.053.

T. Hu, L. J. Renzullo, A. I. J. M. van Dijk, J. He, S. Tian, Z. Xu, J. Zhou, T. Liu, and Q. Liu, “Monitoring agricultural drought in Australia using MTSAT-2 land surface temperature retrievals,” Remote Sensing of Environment, vol. 236, p. 111419, Jan. 2020, doi: 10.1016/j.rse.2019.111419.

X. Hu, H. Ren, K. Tansey, Y. Zheng, D. Ghent, X. Liu, and L. Yan, “Agricultural drought monitoring using European Space Agency Sentinel 3A land surface temperature and normalized difference vegetation index imageries,” Agricultural and Forest Meteorology, vol. 279, p. 107707, Dec. 2019, doi: 10.1016/j.agrformet.2019.107707.

M. T. Paniagua, J. Villalba, and M. Pasten, “Spatial-Temporal Distribution of Drought in the Western Region of Paraguay (2005-2017),” 2020 IEEE Lat. Am. GRSS ISPRS Remote Sens. Conf. LAGIRS 2020 - Proc., pp. 636–639, 2020, doi: 10.1109/LAGIRS48042.2020.9165664.

N. O. Agutu, J. L. Awange, A. Zerihun, C. E. Ndehedehe, M. Kuhn, and Y. Fukuda, “Assessing multi-satellite remote sensing, reanalysis, and land surface models’ products in characterizing agricultural drought in East Africa,” Remote Sens. Environ., vol. 194, pp. 287–302, 2017, doi: 10.1016/j.rse.2017.03.041.

H. West, N. Quinn, and M. Horswell, “Remote sensing for drought monitoring & impact assessment: Progress, past challenges and future opportunities,” Remote Sens. Environ., vol. 232, no. June, p. 111291, 2019, doi: 10.1016/j.rse.2019.111291.

Q. Liu, S. Zhang, H. Zhang, Y. Bai, and J. Zhang, “Monitoring drought using composite drought indices based on remote sensing,” Sci. Total Environ., vol. 711, no. xxxx, p. 134585, 2020, doi: 10.1016/j.scitotenv.2019.134585.

S. Kasus and K. Kendal, “Comparative Analysis of Normalized Difference Drought Index (Nddi) and Thermal Vegetation Index (Tvx) Methods in Determining Paddy Field Drought (Case Study: Kendal Regency),” J. Geod. Undip, vol. 8, no. 1, pp. 318–327, 2019.

K. Y. Chang, L. Xu, G. Starr, and K. T. Paw U, “A drought indicator reflecting ecosystem responses to water availability: The Normalized Ecosystem Drought Index,” Agric. For. Meteorol., vol. 250–251, no. December 2017, pp. 102–117, 2018, doi: 10.1016/j.agrformet.2017.12.001.

M. Dai, S. Huang, Q. Huang, G. Leng, Y. Guo, L. Wang, W. Fang, P. Li, and X. Zheng, “Assessing agricultural drought risk and its dynamic evolution characteristics,” Agricultural Water Management, vol. 231, p. 106003, Mar. 2020, doi: 10.1016/j.agwat.2020.106003.

Q. G. Gao, V. Sombutmounvong, L. Xiong, J. H. Lee, and J. S. Kim, “Analysis of drought-sensitive areas and evolution patterns through statistical simulations of the Indian Ocean Dipole mode,” Water (Switzerland), vol. 11, no. 6, 2019, doi: 10.3390/w11061302.

Regional Disaster Management Agency (BPBD). 2019. Karawang District Disaster Management Agency. Retrieved 12 January 2020 at 18:20 WIB.

Central Bureau of Statistics (BPS). 2016. Kabupaten Karawang Dalam Angka 2016. Karawang: Central Bureau of Statistics.

Central Bureau of Statistics (BPS). 2019. Kabupaten Karawang Dalam Angka 2019. Karawang: Central Bureau of Statistics.

Lakitan, B. 2002. Dasar-Dasar Klimatologi. Jakarta: PT. King Grafindo Persada.

C. Xu, W. An, S.-Y. S. Wang, L. Yi, J. Ge, T. Nakatsuka, M. Sano, and Z. Guo, “Increased drought events in southwest China revealed by tree ring oxygen isotopes and potential role of Indian Ocean Dipole,” Science of The Total Environment, vol. 661, pp. 645–653, Apr. 2019, doi: 10.1016/j.scitotenv.2019.01.186.

F. Rismayatika, R. Saraswati, I. P. A. Shidiq, and Taqyyudin, “Identification of Dry Areas on Agricultural Land using Normalized Difference Drought Index in Magetan Regency,” IOP Conf. Ser. Earth Environ. Sci., vol. 540, no. 1, 2020, doi: 10.1088/1755-1315/540/1/012029.

Suseno, Weling. 2008. The pattern of agricultural drought in Java. Department of Geography FMIPA UI.

Melianawati, D. B., Sobirin. 2000. Impact of El Nino on The Dry Season. Department of Geography FMIPA UI.

H. Azadi, P. Keramati, F. Taheri, P. Rafiaani, D. Teklemariam, K. Gebrehiwot, G. Hosseininia, S. Van Passel, P. Lebailly, and F. Witlox, “Agricultural land conversion: Reviewing drought impacts and coping strategies,” International Journal of Disaster Risk Reduction, vol. 31, pp. 184–195, Oct. 2018, doi: 10.1016/j.ijdrr.2018.05.003.

W. Widiyatmoko, Sudibyakto, E. Nurjani, and E. W. Safriani, “Spatial-temporal patterns of agricultural drought in upper Progo watershed based on remote sensing and land physical characteristics,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 9, no. 2, pp. 480–488, 2019, doi: 10.18517/ijaseit.9.2.8087.

Department of Agriculture. 2008. National Rice Week (PPN) III BB Rice Show Innovation of Hope Technology Drought Padi Tolerant Rice Paddy.

Putri, D. H., R. Saraswati, I.P. Ashidiq. 2019. Drought Potential of Paddy Fields using Temperature Vegetation Dryness Index in Kuningan Regency. EDP Sciences. Volume 125, 28 October 2019, Article number 03009.

Widiyatmoko, W., Sudibyakto, E. Nurjani,E.W. Safriani. 2019. Spatial-Temporal Patterns of Agricultural Drought in Upper Progo Watershed Based on Remote Sensing and Land Physical Characteristics. International Journal on Advanced Science Engineering and Information Technology, Vol. 9. No. 2. 480-488 DOI:10.18517/ijaseit.9.2.8087.

Rahman, F., Sukmono, A., Yuwono, B.D., 2017. Land drought analysis using the NDDI method and Perka BNPB Number 02 Year 2012 (Case Studyi: Kendal District in 2015). Jurnal Geodesi UNDIP, Volume 6, Number 4, Tahun 2017, (ISSN: 2337-845X).

Du, T., Bui, D., Nguyen, M. Lee, H. 2018. Satellite-Based, Multi-Indices for Evaluation of Agricultural Droughts in a Highly Dynamic Tropical Catchment, Central Vietnam. Water, 10(5), 659.

Renza, D., Martinez, E., Arquero, A., Sanchez, J. 2010. Drought estimation maps by means of multidate Landsat fused images. In Proceedings of the 30th EARSeL Symposium.

Koc, C.B., Osmond, P., Peters, A., Irger, M., 2017. A Methodological Framework to Assess the Thermal Performance of Green Infrastructure Through Airborne Remote Sensing. Procedia Eng. 180, 1306–1315.

P. J. Prajesh, B. Kannan, S. Pazhanivelan, R. Kumaraperumal, and K. P. Ragunath, “Analysis of Seasonal Vegetation Dynamics Using MODIS Derived NDVIand NDWI Data: A Case Study of Tamil Nadu,” Madras Agric. J., vol. 106, no. 4–6, 2019, doi: 10.29321/maj.2019.000275.

K. Kurnia, D. Sunaryo, and A. Noraini, “Potential Analysis of Paddy Field Drought Using the Normalized Differency Drought Index (NDDI) and Thermal Vegetation Index (TVI) Methods,” 2019.

I. R. Orimoloye, O. O. Ololade, S. P. Mazinyo, A. M. Kalumba, O. Y. Ekundayo, E. T. Busayo, A. A. Akinsanola, and W. Nel, “Spatial assessment of drought severity in Cape Town area, South Africa,” Heliyon, vol. 5, no. 7, p. e02148, Jul. 2019, doi: 10.1016/j.heliyon.2019.e02148.

Ardiansyah. 2015. Remote Sensing Image Processing Using ENVI 5.1 and ENVI LIDAR. Jakarta : PT Labsig Inderaja Islim.

Gu, Y., Brown, J. F., Verdin, J. P., Wardlow, B. 2007. A five‐year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States. Geophysical Research Letters, 34 (6).

Tavazohi, E., M.A. Nadoushan. 2018. Assessment of Drought in the Zayandehroud Basin During 2000-2015 Using NDDI and SPI Indices. Fresenius Environmental Buletin. Vol.27-No4/2018. 2332-22340.

B. Gao, “NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space,” Remote Sensing of Environment, vol. 58, no. 3, pp. 257–266, Dec. 1996, doi: 10.1016/s0034-4257(96)00067-3.

E. Tavazohi and M. A. Nadoushan, “Assessment of Drought in the Zayandehroud Basin During 2000-2015 Using Nddi and Spi Indices,” Fresenius Environ. Bull., vol. 27, no. 4, pp. 2332–2340, 2018.



  • There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development