The Comparison of Erosion Rates in Grassland, Teak Forest, Crops Land, and Gliricidia Forest Plantation in Wanagama Edu Forest

Ambar Kusumandari, Mahardian Kusmandana, Gandris Awan Bahari

Abstract


Wanagama forest is an integral part of a nearby village. This forest is left unprotected, so local people can easily enter the forest area to take non-timber forest products, including cropland and grass. The increasing demand for grass for feeding the cattle in Wanagama resulted in a larger area of grassland. Therefore, it is highly important to review and measure the erosion rate of the grassland compared to other land uses. This research aims to measure the erosion rates of four land uses and determine the correlation between rainfall and erosion at those four land uses: grassland, teak forest, crops land, and Gliricidia forest plantation. In measuring the erosion rates, this research uses four plots of 22 x 4 meters established at those four land uses. Each plot has two drums at the outlet. We took the erosion samples at every single rainfall event. To investigate the rainfall, there were two ombrometers installed in the field. The results show that the grassland has the lowest erosion rate (0.45 tons/ha) compared to a teak forest (0.5 tons/ha), crops land (0.84 tons/ha), and Gliricidia plantation forest (1.66 tons/ha). The rainfall has a positive coefficient correlation to erosion; the lowest was in grassland (r = 0.723), followed by teak forest (r = 0.828), Gliricidia (r = 0.830), and Crops land (0.873). The higher the rainfall depth will result in the higher erosion rate at the four land uses.


Keywords


Erosion; grassland; teak forest; crops land; Gliricidia; Wanagama.

Full Text:

PDF

References


B. Sulistyo, Penginderaan Jauh Digital: Terapannya dalam Pemodelan Berbasis Raster. Yogyakarta: Penerbit Lokus, 2011.

N Efthimiou, LE Evdoxia, DG Panagoulia and CA Karavitis CA, Assessment of soil susceptibility to erosion using the EPM and RUSLE Models: The case of Venetikos River Catchment. Global NEST Journal. 18(1): 164-179, 2016.

V. E. S. Yuferev V.G., Zavalin A.A., Pleskachev Yu.N., Vdovenko A.V., Fomin S.D., “Degradation of landscapes in the South of the Privolzhsky Upland,” J. For. Sci., vol. 65, no. 5, pp. 195–202, 2019.

A. Khademalrasoul and H. Amerikhah, “Assessment of soil erosion patterns using RUSLE model and GIS tools (case study: the border of Khuzestan and Chaharmahal Province, Iran ),” Model. Earth Syst. Environ., no. August, pp. 1–11, 2020.

R.. Boley, J.D., Drew, A.P., Andrus, Effects of active pasture, teak (Tectona grandis) and mixed native plantations on soil chemistry in Costa Rica. For. Ecol. Manag. 257, 2009.

A. Carle, J.B., Ball, J.B., Del Lungo, The global thematic study of planted forests. Rome: Planted Forests: Uses, Impacts and Sustainability. CAB International,FAO, 2009.

J. L. Stewart and A. J. Simons, Gliricidia sepium: a multipurpose forage tree legume. Guthridge. UK: Forage Tree Legumes in Tropical Agriculture. CAB International, Oxon, 1994.

B. G. McConkey, D. A. Lobb, J. M. W. B. S. Li, and P.M. Krug., Soil Erosion on Cropland: Introduction and Trends for Canada. Canadian Biodiversity: Ecosystem Status and Trends 2010 Technical Thematic Report No. 16 Published by the Canadian Councils of Resource Ministers. 2010.

T. A. Kertis, C.A and Livari, “Soil Erosion on Cropland in the United States: Status and Trends for 1982-2003.,” Proceedings Eighth Fed. Interag. Sediment. Conf. (8thFISC), April 2-6, 2006, Reno, NV, USA. 2006.

C. Ribolzi1, O., Evrard, O., Huon, S., de Rouw, A., Silvera, N., Latsachack, KO., Soulileuth, B., Lefèvre, I., Pierret, A. , Lacombe, G., Sengtaheuanghoung, O., & Valentin, “From shifting cultivation to teak plantation: effect on overland flow and sediment yield in a montane tropical catchment.,” Sci. Rep., no. 7, p. 3987, 2017.

L. Yu, Y., Zhang, K., and Liu, “Measuring and modelling soil erosion and sediment yields in a large cultivated catchment under no-till of Southern Brazil.,” Soil Tillage Res., vol. 174, pp. 24–33, 2017.

J. Loo, M.V., Dusar, B., Verstraeten, G., Renssen, H., Notebaert, B., D’Haen, K., Bakker, “Human induced soil erosion and the implications on crop yield in a small mountainous Mediterranean catchment (SW-Turkey),” CATENA, vol. 149, no. 1, pp. 491–504, 2017.

B Aslam, A Maqsoom, Shahzaib, ZA Kazmi, M Sodangi, F Anwar, MH Bakri, RF Tufail and D Farooq, Effects of landscape changes on soil erosion in the built environment: application of Geospatial-Based RUSLE technique. Sustainability. 12, 5898, 2020. doi: 10.3390/su12155898 www.mdpi.com/journal/sustainability

G. O. Ochola, D. O. Nyamai, and J. B. O. Owuor, “Impacts of Land Use and Land Cover Changes on the Environment associated with the Establishment of Rongo University in Rongo Sub- County , Migori County , Kenya,” Int. J. Environ. Sci. Nat. Resour., vol. 21, no. 5, pp. 0149–0163, 2019.

L. Yue, J. Juying, T. Bingzhe, C. Binting, and L. Hang, “Response of runoff and soil erosion to erosive rainstorm events and vegetation restoration on abandoned slope farmland in the Loess Plateau region , China,” J. Hydrol., vol. 584, no. February, p. 124694, 2020.

S. Bukit, D.Y., Sumono., Lukman, A.H., Edi, “Evaluasi Laju Erosi dengan Metode Petak Kecil dan USLE pada beberapa Kemiringan Tanah Ultisol Tanaman Ubi Jalar di Kecamatan Siborongborong Kabupaten Tapanuli Utara,” J. Rekayasan Pangan dan Pertan., vol. 1, no. 2, pp. 45–50, 2013.

A. Kusumandari, I. Pratiwi, and S. Widiasmoro, “Run off prediction by using small plots at teak forest , dry land and settlement areas in Pitu village , Ngawi , East Java,” Earth and, vol. 449, p. 012040, 2020.

K. A. Kershaw, Quantitative and dynamic plant ecology. 2nd ed. 1973.

Z. Liang et al., “Effects of rainfall intensity , slope angle , and vegetation coverage on the erosion characteristics of Pisha sandstone slopes under simulated rainfall conditions,” Environ. Sci. Pollut. Res., vol. 27, pp. 17458–17467, 2020.

A. E. Ettbeb et al., “Root Tensile Resistance of Selected Pennisetum Species and Shear Strength of Root-Permeated Soil,” Appl. Environ. Soil Sci., vol. 2020, pp. 1–9, 2020.

R. Fiener, P., Wilken, F.Aldana-Jague, E., Deumlich, D., Gómez, J.A., Guzmán, G., Hardy, R.A., Quinton. J.N., Sommer, M., Van Oost, K., Wexler, “Uncertainties in assessing tillage erosion – How appropriate are our measuring techniques?” Geomorphology, vol. 304, pp. 214–225, 2018.

B. A. Evans, R., Collins, A.L., Zhang, Y., Foster, I.D.L. Boardman, J., Sint, H., Lee, M.R.F., Griffith, “A comparison of conventional and137Cs-based estimates of soil erosion rates on arable and grassland across lowland England and Wales.,” Earth-Science Rev. J., vol. 173 (2017), pp. 49–64, 2017.

A. N. Anache, J. A. A., Edson, C. W., Paulo, T. S. O., Dennis, C. F., Mark, “Runoff and Soil Erosion Plot-scale Studies Under Natural Rainfall: A Meta-analysis of the Brazilian Experience.,” Catena, vol. 152 (2017), pp. 29–39, 2017.

Y. Nearinga, M.A., Xie, Y., Liub, B., Yeba, “Natural and anthropogenic rates of soil erosion.” Int. Soil Water Conserv. Res., vol. 5 (2017), pp. 77–84, 2017.

S. Kouelo, A. , Mathieu, A. , Julien, A. , Moriaque, A. , Lambert, A. , Socrate, A. , Pascal, H. , Anastase, A. , Lucien, A. and Aliou, “Variation of Physical and Chemical Properties of Soils under Different Cropping Systems in the Watershed of Kpocomey, Southern Benin.,” Open J. Soil Sci., vol. 10, pp. 501–517, 2020.

D D Gupita and S H Murti BS, Soil erosion and its correlation with vegetation cover: An assesment using multispectral imagery and pixel-based geographic information system in Gesing Sub-Watershed, Central Java, Indonesia. IOP Conf. Series: Earth and Environmental Science 54 (2017) 012047. doi:10.1088/1755-1315/54/1/012047

D. Hillel, Fundamental of Soil Physics. Orlando, Florida.: Academic Press, 1980.

Y. Rogi, Johannes; Rombang, Johan dan Sanger, Agri-Sosial Ekonomi. UNSRAT, ISSN 1907-4298, Vol 12 No 3A, November 2016, 2016.

H. Moradi, G., Vacik, Relationship between vegetation types, soil and topography in southern forests of Iran. J. Forest Resources, vol. 29, pp. 1635–1644, 2018.

M. M. Mazri A., Parsakhoo A., “Efficiency of some conservation treatments for soil erosion control from unallowable slopes of skid trails,” J. For. Sci, vol. 66, pp. 368–374, 2020.

M. Nasiri, “GIS modelling for locating the risk zone of soil erosion in a deciduous forest.” J. For. Sci., vol. 59, no. 2, pp. 87–91, 2013.

I. Ghozali, Aplikasi Analisis Multivariate dengan Program IBM SPSS. Semarang: Universitas Diponegoro, 2016.

A. Dariah, A. Rachman, and U. Kurnia., Erosi dan degradasi lahan kering di Indonesia. Bogor: BalittanahLitbang Deptan, 2004.

Z. L. (John) Zhang, X.C. and Wang, “Interrill soil erosion processes on steep slopes.” J. Hydrol., vol. 548, pp. 652–664, 2017.

P. T. S. Falcão, K., dS., Panachuki, E., Monteiro, F.dN., Menezes, R.S., Rodrigues, D.B.B. Sone, J.S. Oliveira, “Surface runoff and soil erosion in a natural regeneration area of the Brazilian Cerrado.,” Int. Soil Water Conserv. Res., vol. 8, no. 2, June 2020, pp. 124-13-, 2020.

C. Van Bich, N., Eyles, A., Mendham, D., Dong, T.L., Evans, K.J. Hai, V.D. and Mohammed, “Effect of harvest residue management on soil properties of Eucalyptus hybrid and Acacia mangium plantations planted on steep slopes in northern Vietnam.,” J. For. Sci., vol. 82, no. 2, pp. 159–169, 2020.




DOI: http://dx.doi.org/10.18517/ijaseit.11.6.13240

Refbacks

  • There are currently no refbacks.



Published by INSIGHT - Indonesian Society for Knowledge and Human Development