The Utilization of Wastewater from Catfish Pond to Culture Azolla microphylla

Sugeng Triyono, Aprian Mandala Putra, Muhammad Amin, Agus Haryanto


To maintain pond water quality, a large amount of wastewater is discharged. The wastewater degrades the environment and annoys nearby residents. This wastewater is the potential for growing Azolla microphylla, a valuable floating fern for different purposes. This research aims to observe the effect of water replacing period and mechanical aeration on the growth of A. microphylla and the wastewater quality. A 20-gram of A. microphylla biomass was inoculated in a plastic-layered wooden box (50×30×20cm) filled with catfish pond wastewater, and then designed treatments were applied for a 12-day experiment. A completely randomized design with two factorial arrangements was implemented. The first factor was the period of water replacement consisted of four levels: no replacement (E0), once in 2 days (E1), once in 4 days (E2), and once in 6 days (E3). The second factor was mechanical aeration consisted of three levels: no mechanical aeration (A0), 12-hour aeration (A1), and 24-hour aeration (A2). Parameters to be observed were Azolla biomass and water quality (temperature, pH, turbidity, and ammonium). The data set was analyzed using ANOVA followed by LSD multiple comparisons. Results revealed that interaction of the water replacing periods and the mechanical aeration significantly affected water quality (temperature, pH, turbidity, ammonium) but was not significant for the yield of A. microphylla biomass. The factor of water replacing period alone significantly affected the growth of A. microphylla. The E2 treatment was the most promising option, with a biomass yield of 804 g/m2 within 12-day cultivation.


Azolla mycrophylla; growth rate; wastewater; doubling time; ammonium; biomass yield.

Full Text:



F. Basuki, T. Yuniarti, D. Harwanto, and T. Susilowati, “Analysis of growth performance and benefits of a high density catfish Clarias gariepinus Burchell culture in biofloc system,” IOP Conf. Ser. Earth Environ. Sci., vol. 137, p. 012026, Apr. 2018, doi: 10.1088/1755-1315/137/1/012026.

P. H. T. Soedibya, E. Listiowati, T. B. Pramono, N. A. Prayogo, and R. T. Harisam, “Growth performance of Catfish (Clarias gariepenus) cultured of high density with biofloc system,” E3S Web Conf., vol. 47, p. 02002, 2018, doi: 10.1051/e3sconf/20184702002.

C. E. Boyd, “Chemical budgets for channel catfish ponds,” Trans. Am. Fish. Soc., vol. 114, no. 2, pp. 291–298, Mar. 1985, doi: 10.1577/1548-8659(1985)114<291:CBFCCP>2.0.CO;2.

T. P. Cathcart, C. L. Wax, J. W. Pote, and S. Triyono, “A climatological basis for conserving groundwater and reducing overflow in aquaculture ponds in the Southeast United States,” Aquac. Eng., vol. 36, no. 3, pp. 225–232, 2007, doi: 10.1016/j.aquaeng.2006.11.003.

P. J. G. Henriksson et al., “Indonesian aquaculture futures – Evaluating environmental and socioeconomic potentials and limitations,” J. Clean. Prod., vol. 162, pp. 1482–1490, Sep. 2017, doi: 10.1016/j.jclepro.2017.06.133.

A. Haryanto, S. Triyono, and P. M. Siska, “Use of water hyacinth (Eichhornia crassipes) to treat biogas effluent of a tapioca industry wastewater treatment system,” Agric. Eng. Int. CIGR J., vol. 22, no. 4, pp. 9–19, 2020.

E. Amare, F. Kebede, and W. Mulat, “Wastewater treatment by Lemna minor and Azolla filiculoides in tropical semi-arid regions of Ethiopia,” Ecol. Eng., vol. 120, pp. 464–473, Sep. 2018, doi: 10.1016/j.ecoleng.2018.07.005.

E. Bianchi et al., “Improving the efficiency of wastewater treatment plants: Bio-removal of heavy-metals and pharmaceuticals by Azolla filiculoides and Lemna minuta,” Sci. Total Environ., vol. 746, p. 141219, Dec. 2020, doi: 10.1016/j.scitotenv.2020.141219.

M. Das, F. I. Rahim, and M. A. Hossain, “Evaluation of fresh Azolla pinnata as a low-cost supplemental feed for Thai Silver Barb Barbonymus gonionotus,” Fishes, vol. 3, no. 1, Art. no. 1, Mar. 2018, doi: 10.3390/fishes3010015.

T. Mahanty et al., “Biofertilizers: a potential approach for sustainable agriculture development,” Environ. Sci. Pollut. Res., vol. 24, no. 4, pp. 3315–3335, Feb. 2017, doi: 10.1007/s11356-016-8104-0.

D. Widiastuti and J. G. Davis, “Optimization of the nutrient growing solution and inoculation rate for Azolla mexicana production and use as fertilizer,” J. Plant Nutr., vol. 0, no. 0, pp. 1–16, Nov. 2020, doi: 10.1080/01904167.2020.1849287.

Y. Yao et al., “Azolla biofertilizer for improving low nitrogen use efficiency in an intensive rice cropping system,” Field Crops Res., vol. 216, pp. 158–164, Feb. 2018, doi: 10.1016/j.fcr.2017.11.020.

S. S. Mosha, “A review on significance of Azolla meal as a protein plant source in Finfish culture,” J. Aquac. Res. Dev., vol. 09, no. 07, 2018, doi: 10.4172/2155-9546.1000544.

I. Oktavianawati et al., “Effects of feeding diets containing Azolla pinnata and probiotic on the growth and nutritional content of Patin fish (Pangasius djambal),” Agric. Agric. Sci. Procedia, vol. 9, pp. 403–410, 2016, doi: 10.1016/j.aaspro.2016.02.156.

F. I. Magouz, M. A. O. Dawood, M. F. I. Salem, and A. A. I. Mohamed, “The effects of fish feed supplemented with Azolla meal on the growth performance, digestive enzyme activity, and health condition of genetically-improved farmed Tilapia (Oreochromis niloticus),” Ann. Anim. Sci., vol. 20, no. 3, pp. 1029–1045, Jul. 2020, doi: 10.2478/aoas-2020-0016.

W. A. Abd El-Ghany, “A review on the use of Azolla species in poultry production,” J. Worlds Poult. Res., vol. 10, no. 2, pp. 378–384, Jun. 2020, doi: 10.36380/jwpr.2020.44.

M. Shukla, A. Bhattacharyya, P. K. Shukla, D. Roy, B. Yadav, and R. Sirohi, “Effect of Azolla feeding on the growth, feed conversion ratio, blood biochemical attributes and immune competence traits of growing turkeys,” Vet. World, vol. 11, no. 4, pp. 459–463, Apr. 2018, doi: 10.14202/vetworld.2018.459-463.

A. M. Abdelatty et al., “Influence of level of inclusion of Azolla leaf meal on growth performance, meat quality and skeletal muscle p70S6 kinase α abundance in broiler chickens,” Animal, vol. 14, no. 11, pp. 2423–2432, Jan. 2020, doi: 10.1017/S1751731120001421.

A. Setiadi, S. I. Santoso, . S., L. D. Mahfudz, and A. B. Susanto, “An economic analysis of Kampung chicken production using the small water plant Azolla microphylla in their feed,” Pak. J. Nutr., vol. 15, no. 3, pp. 264–267, Feb. 2016, doi: 10.3923/pjn.2016.264.267.

B. K. Korir, M. M. M. Wanyoike, J. K. N. Kuria, D. M. Mwangi, and E. K. Muge, “Cassava leaves and azolla as crude protein supplement feed to east African short horned Zebu Heifers,” Afr. J. Agric. Res., vol. 16, no. 10, pp. 1458–1463, Oct. 2020, doi: 10.5897/AJAR2020.15061.

P. Brouwer et al., “Growing Azolla to produce sustainable protein feed: the effect of differing species and CO2 concentrations on biomass productivity and chemical composition,” J. Sci. Food Agric., vol. 98, no. 12, pp. 4759–4768, Sep. 2018, doi: 10.1002/jsfa.9016.

V. Kumar, P. Kumar, P. Kumar, and J. Singh, “Anaerobic digestion of Azolla pinnata biomass grown in integrated industrial effluent for enhanced biogas production and COD reduction: Optimization and kinetics studies,” Environ. Technol. Innov., vol. 17, p. 100627, Feb. 2020, doi: 10.1016/j.eti.2020.100627.

K. Karthikeya, M. K. Sarma, N. Ramkumar, and S. Subudhi, “Exploring optimal strategies for aquatic macrophyte pre-treatment: Sustainable feedstock for biohydrogen production,” Biomass Bioenergy, vol. 140, p. 105678, Sep. 2020, doi: 10.1016/j.biombioe.2020.105678.

S. M. Pirbazari, O. Norouzi, K. Kohansal, and A. Tavasoli, “Experimental studies on high-quality bio-oil production via pyrolysis of Azolla by the use of a three metallic/modified pyrochar catalyst,” Bioresour. Technol., vol. 291, p. 121802, Nov. 2019, doi: 10.1016/j.biortech.2019.121802.

A. F. Miranda, N. R. Kumar, G. Spangenberg, S. Subudhi, B. Lal, and A. Mouradov, “Aquatic plants, Landoltia punctata>, and Azolla filiculoides as bio-converters of wastewater to biofuel,” Plants, vol. 9, no. 4, Art. no. 4, Apr. 2020, doi: 10.3390/plants9040437.

P. Brouwer, A. van der Werf, H. Schluepmann, G.-J. Reichart, and K. G. J. Nierop, “Lipid yield and composition of Azolla filiculoides and the Implications for biodiesel production,” BioEnergy Res., vol. 9, no. 1, pp. 369–377, Mar. 2016, doi: 10.1007/s12155-015-9665-3.

H. M. Mustafa and G. Hayder, “Recent studies on applications of aquatic weed plants in phytoremediation of wastewater: A review article,” Ain Shams Eng. J., Jun. 2020, doi: 10.1016/j.asej.2020.05.009.

M. P. Gomes, J. C. M. de Brito, M. M. L. Carvalho Carneiro, M. R. Ribeiro da Cunha, Q. S. Garcia, and C. C. Figueredo, “Responses of the nitrogen-fixing aquatic fern Azolla to water contaminated with ciprofloxacin: Impacts on biofertilization,” Environ. Pollut., vol. 232, pp. 293–299, Jan. 2018, doi: 10.1016/j.envpol.2017.09.054.

S. Ali et al., “Application of foating aquatic plants in phytoremediation of heavy metals polluted water: A review,” Sustainability, vol. 12, no. 5, p. 1927, Mar. 2020, doi: 10.3390/su12051927.

A. Golzary, O. Tavakoli, Y. Rezaei, and A. Karbassi, “Wastewater treatment by Azolla Filiculoides: A study on color, odor, COD, nitrate, and phosphate removal,” Pollution, vol. 4, no. 1, Jan. 2018, doi: 10.22059/poll.2017.236692.290.

M. Kaur, M. Kumar, S. Sachdeva, and S. K. Puri, “Aquatic weeds as the next generation feedstock for sustainable bioenergy production,” Bioresour. Technol., vol. 251, pp. 390–402, Mar. 2018, doi: 10.1016/j.biortech.2017.11.082.

J. Liu, H. Xu, Y. Jiang, K. Zhang, Y. Hu, and Z. Zeng, “Methane Emissions and Microbial Communities as Influenced by Dual Cropping of Azolla along with Early Rice,” Sci. Rep., vol. 7, no. 1, p. 40635, Feb. 2017, doi: 10.1038/srep40635.

W. Raja, W. Rathaur, S. A. John, and P. P. Ramteke, “Azolla: An aquatic pteridophyte with great potential,” Int. J. Res. Biol. Sci., vol. 2, no. 2, pp. 68–72, 2012.

E. Safriyani, M. Hasmeda, M. Munandar, F. Sulaiman, H. Holidi, and K. Kartika, “The role of Azolla on improving nitrogen efficiency in rice cultivation,” Iran. J. Plant Physiol., vol. 10, no. 2, pp. 3095–3102, Jan. 2020, doi: 10.22034/ijpp.2020.672569.

L. Acero, “Phytoremediation of phosphorous and ammonia with Eichhornia crassipes and Azolla pinnata in waste waters from Estero de San Miguel Mendiola Manila Philippines,” E3S Web Conf., vol. 93, p. 02004, 2019, doi: 10.1051/e3sconf/20199302004.

K. Kunlasak, C. Chitmanat, N. Whangchai, J. Promya, and L. Lebel, “Relationships of dissolved oxygen with chlorophyll-a and phytoplankton composition in Tilapia ponds,” Int. J. Geosci., vol. 04, no. 05, pp. 46–53, 2013, doi: 10.4236/ijg.2013.45B008.

M. Abdel-Tawwab, “Effect of free-floating macrophyte, Azolla pinnata on water physico-chemistry, primary productivity, and the production of Nile Tilapia, Oreochromis niloticus (L.), and common carp, Cyprinus carpio L., in fertilized earthen ponds,” J. Appl. Aquac., vol. 18, no. 1, pp. 21–41, Mar. 2006, doi: 10.1300/J028v18n01_02.

Y. Abou, M. P. Aina, B. Dimon, E. D. Fiogbé, and J.-C. Micha, “Effect of covering water surface with azolla (Azolla filiculoides Lam.) on water quality, growth and production of nile tilapia fed practical azolla-diets in earthen ponds,” Int. J. Agron. Agric. Res. IJAAR, vol. 2, no. 12, pp. 1–9, 2012.

A. Arora and P. K. Singh, “Comparison of biomass productivity and nitrogen fixing potential of Azolla SPP,” Biomass Bioenergy, vol. 24, no. 3, pp. 175–178, Mar. 2003, doi: 10.1016/S0961-9534(02)00133-2.

M. A. Zazouli, Y. Mahdavi, E. Bazrafshan, and D. Balarak, “Phytodegradation potential of bisphenolA from aqueous solution by Azolla filiculoides,” J. Environ. Health Sci. Eng., vol. 12, no. 1, p. 66, Dec. 2014, doi: 10.1186/2052-336X-12-66.

D. S. Lloyd, “Turbidity in Freshwater Habitats of Alaska - A Review of Published and Unpublished Literature Relevant to the Use of Turbidity as a Water Quality Standard,” Alaska Department of Fish and Game, Juneau, Alaska, Jan. 1985.

R. P. Singh and P. K. Singh, “Effect of nitrogen fertilizers on nitrogen fixation and heterocyst frequency of Cyanobacterium Anabaena azollae in 7 species of Azolla,” Biochem. Physiol. Pflanz., vol. 185, no. 5–6, pp. 429–433, Jan. 1989, doi: 10.1016/S0015-3796(89)80068-X.

A. L. Singh and P. K. Singh, “Comparative study on Azolla and Blue-Green algae dual culture with rice,” Isr. J. Bot., vol. 36, no. 2, pp. 53–61, 1987.

D. P. Widiastuti, “Azolla biofertilizer growth and utilization for vegetable production,” Dissertation, Colorado State University, Fort Collins, Colorado, 2017.

B. Nordiah, Z. M. Harah, B. J. Sidik, and W. N. W. Hazma, “Azolla pinnata growth performance in different water sources,” Pak. J. Biol. Sci., vol. 15, no. 13, pp. 621–628, Dec. 2012, doi: 10.3923/pjbs.2012.621.628.

R. M. El-Shahate, M. M. El-Araby, E. W. Eweda, and M. N. El-Berashi, “Evaluation of the effect of three different pesticides on Azolla pinnata growth and NPK uptake,” J. Am. Sci., vol. 7, no. 1, pp. 1020–1031, 2011.

A. B. Manna and P. K. Singh, “Growth and nitrogen fixation of Azolla pinnata and Azolla caroliniana as affected by urea fertilizer and their influence on rice yield,” Plant Soil, vol. 122, no. 2, pp. 207–212, Mar. 1990, doi: 10.1007/BF02851977.

T. Kösesakal and M. Yıldız, “Growth performance and biochemical profile of Azolla pinnata and Azolla caroliniana grown under greenhouse conditions,” Arch. Biol. Sci., vol. 71, no. 3, pp. 475–482, 2019, doi: 10.2298/ABS190131030K.



  • There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development