### Numerical Study on Wave Run-up to Identify the Most Effective Design of Jakarta’s Outer Sea Dike

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

Central Intelligence Ageny, “The World Factbook,” 2021. .

World Bank, “Strengthening the Disaster Resilience of Indonesian Cities – A Plicy Note,” World Bank, Washington, D. C., 2019.

A. Widodo, “Analyzing Indonesia’s NCICD Project to Stop the Capital City Sinking,” Otoritas J. Ilmu Pemerintah., vol. 7, no. 2, pp. 54–66, 2017, doi: 10.26618/ojip.v7i2.769.

C. Asdak, S. Supian, and Subiyanto, “Watershed management strategies for flood mitigation: A case study of Jakarta’s flooding,” Weather Clim. Extrem., vol. 21, pp. 117–122, Sep. 2018, doi: 10.1016/j.wace.2018.08.002.

H. Suprayogi, A. Rudyanto, H. Bachtiar, and L. M. Limantara, “Critical-phase sea dike construction of NCICD program in Jakarta as national capital city,” IOP Conf. Ser. Earth Environ. Sci., vol. 162, no. 1, p. 12020, 2018, doi: 10.1088/1755-1315/162/1/012020.

D. Di Luccio, G. Benassai, G. Budillon, L. Mucerino, R. Montella, and E. Pugliese Carratelli, “Wave run-up prediction and observation in a micro-tidal beach,” Nat. Hazards Earth Syst. Sci., vol. 18, no. 11, pp. 2841–2857, 2018, doi: 10.5194/nhess-18-2841-2018.

F. M. Evers and R. M. Boes, “Impulse wave run-up on steep to vertical slopes,” J. Mar. Sci. Eng., vol. 7, no. 1, pp. 1–15, 2019, doi: 10.3390/jmse7010008.

M. A. Shermeneva, “Calculation of the sea wave run-up on a sloping beach,” Phys. Wave Phenom., vol. 25, no. 1, pp. 74–77, 2017, doi: 10.3103/S1541308X17010125.

H. J. Hafsteinsson, F. M. Evers, and W. H. Hager, “Solitary wave run-up: wave breaking and bore propagation,” J. Hydraul. Res., vol. 55, no. 6, pp. 787–798, 2017, doi: 10.1080/00221686.2017.1356756.

A. Nicolae Lerma, R. Pedreros, A. Robinet, and N. Sénéchal, “Simulating wave setup and runup during storm conditions on a complex barred beach,” Coast. Eng., vol. 123, no. January, pp. 29–41, 2017, doi: 10.1016/j.coastaleng.2017.01.011.

G. V. Da Silva, P. G. Da Silva, R. S. Araujo, A. H. Da Fontoura Klein, and E. Toldo, “Wave run-up on embayed beaches. Study case: Itapocorói Bay, Southern Brazil,” Brazilian J. Oceanogr., vol. 65, no. 2, pp. 187–200, 2017, doi: 10.1590/s1679-87592017133706502.

A. Khoury, A. Jarno, and F. Marin, “Experimental study of run-up for sandy beaches under waves and tide,” Coast. Eng., vol. 144, no. September 2017, pp. 33–46, 2019, doi: 10.1016/j.coastaleng.2018.12.003.

C. Ji, Q. Zhang, and Y. Wu, “An empirical formula for maximum wave setup based on a coupled wave-current model,” Ocean Eng., vol. 147, no. September 2017, pp. 215–226, 2018, doi: 10.1016/j.oceaneng.2017.10.021.

A. Torres-Freyermuth, J. C. Pintado-Patiño, A. Pedrozo-Acuña, J. A. Puleo, and T. E. Baldock, “Runup uncertainty on planar beaches,” Ocean Dyn., vol. 69, no. 11–12, pp. 1359–1371, 2019, doi: 10.1007/s10236-019-01305-y.

G. Dodet, F. Leckler, D. Sous, F. Ardhuin, J. F. Filipot, and S. Suanez, “Wave Runup Over Steep Rocky Cliffs,” J. Geophys. Res. Ocean., vol. 123, no. 10, pp. 7185–7205, 2018, doi: 10.1029/2018JC013967.

Y. Yao, M. jun Jia, D. wei Mao, Z. zhi Deng, and X. jian Liu, “A Numerical Investigation of the Reduction of Solitary Wave Run-up by A Row of Vertical Slotted Piles,” China Ocean Eng., vol. 34, no. 1, pp. 10–20, 2020, doi: 10.1007/s13344-020-0002-z.

M. Alagan Chella, H. Bihs, D. Myrhaug, and M. Muskulus, “Breaking solitary waves and breaking wave forces on a vertically mounted slender cylinder over an impermeable sloping seabed,” J. Ocean Eng. Mar. Energy, vol. 3, no. 1, pp. 1–19, 2017, doi: 10.1007/s40722-016-0055-5.

X. Fan, J. Zhang, and H. Liu, “Numerical analysis on the secondary load cycle on a vertical cylinder in steep regular waves,” Ocean Eng., vol. 168, no. April, pp. 133–139, 2018, doi: 10.1016/j.oceaneng.2018.08.064.

X. Fan, J. xin Zhang, and H. Liu, “Numerical Investigation of Run-ups on Cylinder in Steep Regular Wave,” China Ocean Eng., vol. 33, no. 5, pp. 601–607, 2019, doi: 10.1007/s13344-019-0058-9.

X. Zou, L. Zhu, and J. Zhao, “Numerical simulations of non-breaking, breaking and broken wave interaction with emerged vegetation using navier-stokes equations,” Water (Switzerland), vol. 11, no. 12, p. 2561, 2019, doi: 10.3390/w11122561.

V. Sriram, Q. W. Ma, and T. Schlurmann, “Numerical simulation of breaking waves using hybrid coupling of fnpt and ns solvers,” Proc. Int. Offshore Polar Eng. Conf., vol. 4, pp. 1118–1124, 2012.

D. Adytia, S. R. Pudjaprasetya, and D. Tarwidi, “Modeling of wave run-up by using staggered grid scheme implementation in 1D Boussinesq model,” Comput. Geosci., vol. 23, no. 4, pp. 793–811, 2019, doi: 10.1007/s10596-019-9821-5.

J. Hao and A. Gao, “Blow-up for Generalized Boussinesq Equation with Double Damping Terms,” Mediterr. J. Math., vol. 17, no. 6, pp. 2–11, 2020, doi: 10.1007/s00009-020-01604-5.

C. Lawrence, D. Adytia, and E. van Groesen, “Variational Boussinesq model for strongly non-linear dispersive waves,” Wave Motion, vol. 76, pp. 78–102, 2018, doi: 10.1016/j.wavemoti.2017.10.009.

Y. Ning, W. Liu, X. Zhao, Y. Zhang, and Z. Sun, “Study of irregular wave run-up over fringing reefs based on a shock-capturing Boussinesq model,” Appl. Ocean Res., vol. 84, no. January, pp. 216–224, 2019, doi: 10.1016/j.apor.2019.01.013.

W. Liu, Y. Ning, F. Shi, and Z. Sun, “A 2DH fully dispersive and weakly non-linear Boussinesq-type model based on a finite-volume and finite-difference TVD-type scheme,” Ocean Model., vol. 147, no. December 2019, p. 101559, 2020, doi: 10.1016/j.ocemod.2019.101559.

Y. Yao, Z. Tang, C. Jiang, W. He, and Z. Liu, “Boussinesq modeling of solitary wave run-up reduction by emergent vegetation on a sloping beach,” J. Hydro-Environment Res., vol. 19, pp. 78–87, 2018, doi: 10.1016/j.jher.2018.03.001.

H. Suzuki, Y. Hasegawa, M. Watanabe, U. Tatsuo, and S. Mochizuki, “Second-order kinetic energy-conservative analysis of incompressible turbulence under a collocated grid system,” J. Phys. Conf. Ser., vol. 1633, no. 1, p. 012063, 2020, doi: 10.1088/1742-6596/1633/1/012063.

I. Magdalena, “Non-hydrostatic model for solitary waves passing through a porous structure,” J. Disaster Res., vol. 11, no. 5, pp. 957–963, 2016, doi: 10.20965/jdr.2016.p0957.

I. Magdalena, Iryanto, and D. E. Reeve, “Free-surface long wave propagation over linear and parabolic transition shelves,” Water Sci. Eng., vol. 11, no. 4, pp. 318–327, 2018, doi: 10.1016/j.wse.2019.01.001.

I. Magdalena, S. R. Pudjaprasetya, and L. H. Wiryanto, “Wave interaction with an emerged porous media,” Adv. Appl. Math. Mech., vol. 6, no. 5, pp. 680–692, 2014, doi: 10.4208/aamm.2014.5.s5.

I. Magdalena and H. Q. Rif’atin, “Analytical and numerical studies for harbor oscillation in a semi-closed basin of various geometric shapes with porous media,” Math. Comput. Simul., vol. 170, pp. 351–365, 2020, doi: 10.1016/j.matcom.2019.10.020.

T. Goudon, J. Llobell, and S. Minjeaud, “A Staggered Scheme for the Euler Equations,” in Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems. FVCA 2017. Springer Proceedings in Mathematics & Statistics, 2017, pp. 91–99, doi: 10.1007/978-3-319-57394-6_10.

C. E. Synolakis, “The run-up of solitary waves,” J. Fluid Mech., vol. 185, no. December 1987, pp. 523–545, 1987, doi: 10.1017/S002211208700329X.

DOI: http://dx.doi.org/10.18517/ijaseit.12.1.12613

### Refbacks

- There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development