Hypocenter Determination and Estimation 1-D Velocity Models Using Coupled Velocity-Hypocenter Method

Widya Utama, Sherly Ardhya Garini


Hypocenter relocation is performed to obtain a high-precision hypocenter location (accurate earthquake location). An accurate earthquake location is the key problem in seismology. Further information from an accurate hypocenter location can be used for seismicity analysis, velocity structure study, and earthquake prone mapping as one of the earthquake mitigation efforts. In this research, the method used to relocate the earthquake hypocenter was the Coupled Velocity-Hypocenter. Relocations were conducted in the Central Sulawesi region; we located 40 local earthquake events with a magnitude of ≥ 3.8 ML and a depth of ≤ 25 km. The selected P-wave traveltimes were inverted from 5 seismic stations. The variance of initial velocity models used the 1-D Primary wave velocity model of North Sulawesi, Jeffrey-Bullen and Central Sulawesi. The relocation results show that most of the hypocenters are concentrated precisely in minor faults present in the research area, and the hypocenter distribution of the events indicated as destructive shallow earthquakes occurs at depths of about 5-15 km. The residual distributions resulting from the relocation using the initial velocity model of the Central Sulawesi region indicates an improved quality if compared to Jeffrey-Bullen velocity model and the North Sulawesi velocity model, with RMS error value of 0.08 seconds. This research concluded that the 1-D velocity model in the regional (Central Sulawesi Region) reference was suitable for determining the high-precision hypocenter location.


1-D velocity model; Coupled Velocity-Hypocenter; faults, hypocenter; Sulawesi.

Full Text:



A. T. Sasmi, A. D. Nugraha, M. Muzli, S. Widiyantoro, Z. Zulfakriza, S. Wei, D. P. Sahara, A. Riyanto, N. T. Puspito, A. Priyono, T. Greenfield, H. Afif, P. Supendi, D. Daryono, A. Ardianto, D. K. Syahbana, Y. M. Husni, B. S. Prabowo, and A. F. Narotama Sarjan, “Hypocenter and Magnitude Analysis of Aftershocks of the 2018 Lombok, Indonesia, Earthquakes Using Local Seismographic Networks,” Seismological Research Letters, vol. 91, no. 4, pp. 2152–2162, May 2020, doi: 10.1785/0220190348.

Hery Harjono. Sesmotektonik Busur Sunda. Jakarta: LIPI Press, 2017.

M. F. I. Massinai, A. P. Astuti, M. R. B. Kiraman, M. A. Massinai, and M. Ramdhan, “Hypocenter determination and focal mechanism solution of May 29 2017 earthquake around Poso, Central Sulawesi, Indonesia,” J. Phys. Conf. Ser., vol. 1341, no. 8, 2019, doi: 10.1088/1742-6596/1341/8/082017.

E. Karasözen and B. Karasözen, “Earthquake location methods,” GEM - Int. J. Geomathematics, vol. 11, no. 1, 2020, doi: 10.1007/s13137-020-00149-9.

W. I. Sevilla, L. A. Jumawan, C. J. Clarito, M. A. Quintia, A. A. Dominguiano, and R. U. Solidum, “Improved 1D velocity model and deep long-period earthquakes in Kanlaon Volcano, Philippines: Implications for its magmatic system,” J. Volcanol. Geotherm. Res., vol. 393, p. 106793, 2020, doi: 10.1016/j.jvolgeores.2020.106793.

V. Midzi, T. Pule, B. Manzunzu, T. Mulabisana, B. S. Zulu, and S. Myendeki, “Improved earthquake location in the gold mining regions of south africa using new velocity models,” South African J. Geol., vol. 123, no. 1, pp. 35–58, 2020, doi: 10.25131/sajg.123.0008.

M. Zhang, W. L. Ellsworth, and G. C. Beroza, “Rapid Earthquake Association and Location,” Seismol. Res. Lett., vol. 90, no. 6, pp. 2276–2284, 2019, doi: 10.1785/0220190052.

F. Zahwa, E. I. Fattah, M. U. Hasanah, and B. Wijatmoko, “Microearthquake relocation hypocenter using Modified Joint Hypocenter Determination (MJHD) method. (case study: Opak fault),” IOP Conf. Ser. Earth Environ. Sci., vol. 311, no. 1, 2019, doi: 10.1088/1755-1315/311/1/012066.

M. Rezaeifar and E. Kissling, “Compilation of a high-quality catalogue for M3.0+ seismicity in northern Iran region for the period of 2005-2017,” Geophys. J. Int., vol. 215, pp. 118–132, 2018, doi: 10.1093/gji/ggy271.

T. Ryberg and C. Haberland, “Bayesian simultaneous inversion for local earthquake hypocenters and 1-D velocity structure using minimum prior knowledge,” Geophys. J. Int., 2019, doi: 10.1093/gji/ggz177.

L. Dong, W. Zou, D. Sun, X. Tong, X. Li, and W. Shu, “Some Developments and New Insights for Microseismic/Acoustic Emission Source Localization,” Shock Vib., vol. 2019, 2019, doi: 10.1155/2019/9732606.

C. S. Tumangkeng, D. R. Wenas, and S. I. Umboh, “Model Kecepatan 1DGelombang P dan Relokasi Hiposenter Wilayah Sulawesi Utara dan Sekitarnya Menggunakan Metode Coupled Velocity-Hypocenter,” Pendidik. Fis. UNIMA, vol. 1, no. 2, pp. 1–7, 2020.

J. P. G. N. Rochman, B. J. Santosa, and F. R. Firdaus, “Model Struktur 1-D Kecepatan Gelombang P di daerah Minahasa,” J. Fis. dan Apl., vol. 8, no. 2, pp. 1–4, 2012.

S. A. Garini, Madlazim, and E. Rahmawati, “Relokasi Hiposenter Gempa Bumi Di Sulawesi Tengah dengan menggunakan Metode Geiger dan Coupled Velocity-Hypocenter,” J. Fis., vol. 03, no. 02, pp. 107–112, 2014.

N. T. Puspito, “Struktur kecepatan gelombang gempa dan koreksi stasiun seismologi di indonesia,” JMS, vol. 1, no. 2, pp. 20–39, 1996.

M. Ramdhan, S. Widiyantoro, A. Dian, S. Said, and A. A. Fahmi, “Relocation of hypocenters from DOMERAPI and BMKG networks : a preliminary result from DOMERAPI project,” Proj. Earthq. Sci., vol. 30, no. 2, pp. 67–79, 2017, doi: 10.1007/s11589-017-0178-3.

G. P. Wigantiyoko, F. Syaifuddin, and W. Utama, “Vp/Vs Hasil Independent Inversion Gelombang PP dan PS Untuk Menentukan Litologi Reservoir,” J. Tek. ITS, vol. 5, no. 2, pp. 5–7, 2016.

S. Husen, E. Kissling, E. Flueh, and G. Asch, “Accurate hypocentre determination in the seismogenic zone of the subducting Nazca Plate in northern Chile using a combined on- / offshore network,” Geophys. J. Int., vol. 138, pp. 687–701, 1999.

DOI: http://dx.doi.org/10.18517/ijaseit.12.3.12488


  • There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development