A New Feature Extraction Method for Classifying Heart Wall from Left Ventricle Cavity

Riyanto Sigit, Achmad Basuki, - Anwar

Abstract


Echocardiography is a method of examination with high-frequency sound waves to obtain images of heart organs. Examination of heart health conditions with echocardiography as an imaging method, serves to detect the potential for heart disease, thus that the right treatment from the evaluation results can be decided. Examination of the source of heart disease with echocardiography was performed using several views, namely the long axis, short axis, two-chamber, and four-chamber. However, the assessment of cardiac function is still carried out conventionally. Thus it is necessary to build a system that can assess cardiac function. This study proposes a feature extraction method for the classification of heart disease based on the left ventricular motion on the short-axis. In this method, feature extraction uses 24 good features for the process of tracking the movement of the left ventricle with optical flow. Each good feature produces four features, namely direction (negative direction and positive direction) and distance (negative distance and positive distance) from the results of left ventricular tracking and produces 96 attributes for the whole process. The features that have been obtained are then processed using several classification algorithms with validation techniques that are, k-folds, and leave one out. The result is a classification algorithm with a gradient boosting classifier method that has the best accuracy. Gradient boosting classifier produces accuracy values with validation techniques for k-folds 90.98%, and leave one out 93.23%. This shows that the gradient boosting classifier can be relied upon for the classification of heart disease using the proposed feature extraction method. In this study, we developed a new feature extraction method from the results of tracking the heart wall using optical flow. This algorithm can produce feature values from the tracking results that can be used to build a knowledge system for the classification of heart health conditions.

Keywords


ultrasound images; left ventricle; optical flow; feature extraction; gradient boosting classifier.

Full Text:

PDF

References


American Hearth Association, “What is Cardiovascular Disease,†2014. doi: 10.1016/j.cplett.2007.12.031.

T. A. Foley et al., “Measuring left ventricular ejection fraction-techniques and potential pitfalls,†Eur. Cardiol., 2012, doi: 10.15420/ecr.2012.8.2.108.

M. Seckerdieck, P. Holler, P. Smets, and G. Wess, “Simpson’s method of discs in Salukis and Whippets: Echocardiographic reference intervals for end-diastolic and end-systolic left ventricular volumes,†J. Vet. Cardiol., vol. 17, no. 4, pp. 271–281, 2015, doi: 10.1016/j.jvc.2015.08.002.

D. Attia and A. Benazza-Benyahia, “Left ventricle detection in echocardiography videos,†2018 4th Int. Conf. Adv. Technol. Signal Image Process. ATSIP 2018, pp. 1–6, 2018, doi: 10.1109/ATSIP.2018.8364476.

E. Smistad, A. Ostvik, B. O. Haugen, and L. Lovstakken, “2D left ventricle segmentation using deep learning,†IEEE Int. Ultrason. Symp. IUS, pp. 4–7, 2017, doi: 10.1109/ULTSYM.2017.8092573.

R. Sigit, A. R. Barakbah, and I. A. Sulistijono, “Improved segmentation of cardiac image using triangle and partial Monte Carlo,†in 2016 International Conference on Knowledge Creation and Intelligent Computing, KCIC 2016, 2017, doi: 10.1109/KCIC.2016.7883624.

R. Sigit, A. R. Barakbah, I. A. Sulistijono, and A. S. Aziz, “Automatic cardiac segmentation using triangle and optical flow,†Indones. J. Electr. Eng. Comput. Sci., vol. 8, no. 2, pp. 315–326, 2017, doi: 10.11591/ijeecs.v8.i2.pp315-326.

A. Anwar, R. Sigit, A. Basuki, I. P. Adi, and S. Gunawan, “Automatic Segmentation of Heart Cavity in Echocardiography Images : Two & Four-Chamber View Using Iterative Process Method,†Proc. - Int. Electron. Symp. Knowl. Creat. Intell. Comput. IES-KCIC 2019, pp. 177–182, 2019.

R. Sigit, C. A. Roji, T. Harsono, and S. Kuswadi, “Improved echocardiography segmentation using active shape model and optical flow,†TELKOMNIKA (Telecommunication Comput. Electron. Control., vol. 17, no. 2, p. 809, 2019, doi: 10.12928/telkomnika.v17i2.11821.

A. A. Pratiwi, R. Sigit, D. K. Basuki, and Y. H. Oktaviono, “Improved ejection fraction measurement on cardiac image using optical flow,†Proc. - Int. Electron. Symp. Knowl. Creat. Intell. Comput. IES-KCIC 2017, vol. 2017-Janua, pp. 295–300, 2017, doi: 10.1109/KCIC.2017.8228602.

A. S. Aziz, R. Sigit, A. Basuki, and T. Hidayat, “Cardiac motions classification on sequential PSAX echocardiogram,†Indones. J. Electr. Eng. Comput. Sci., vol. 12, no. 3, pp. 1289–1296, 2018, doi: 10.11591/ijeecs.v12.i3.pp1289-1296.

C. Nofindarwati, R. Sigit, and T. Harsono, “Detection of Heart Condition based on Echocardiography Image using Ultrasound,†IES 2019 - Int. Electron. Symp. Role Techno-Intelligence Creat. an Open Energy Syst. Towar. Energy Democr. Proc., pp. 522–526, 2019, doi: 10.1109/ELECSYM.2019.8901556.

I. P. A. S. Gunawan, R. Sigit, and A. I. Gunawan, “Vein Visualization System Using Camera and Projector Based on Distance Sensor,†2018 Int. Electron. Symp. Eng. Technol. Appl. IES-ETA 2018 - Proc., pp. 150–156, 2019, doi: 10.1109/ELECSYM.2018.8615501.

I. Putu Adi Surya Gunawan, R. Sigit, and A. I. Gunawan, “Veins projection performance based on ultrasonic distance sensor in various surface objects,†Indones. J. Electr. Eng. Comput. Sci., 2019, doi: 10.11591/ijeecs.v17.i3.pp1362-1370.

S. S. Sengar and S. Mukhopadhyay, “Moving object area detection using normalized self adaptive optical flow,†Optik (Stuttg)., vol. 127, no. 16, pp. 6258–6267, 2016, doi: 10.1016/j.ijleo.2016.03.061.

Anwar, R. Sigit, A. Basuki, and I. Putu Adi Surya Gunawan, “Implementation of optical flow: Good feature definition for tracking of heart cavity,†Indones. J. Electr. Eng. Comput. Sci., 2020, doi: 10.11591/ijeecs.v18.i2.pp1057-1065.

N. G. Pandian, D. J. Skorton, S. M. Collins, H. L. Falsetti, E. R. Burke, and R. E. Kerber, “Heterogeneity of left ventricular segmental wall thickening and excursion in 2-dimensional echocardiograms of normal human subjects,†Am. J. Cardiol., vol. 51, no. 10, pp. 1667–1673, 1983, doi: 10.1016/0002-9149(83)90207-2.

E. Alpaydin, Introduction to Machine Learning 2nd. 2010.




DOI: http://dx.doi.org/10.18517/ijaseit.10.3.12152

Refbacks

  • There are currently no refbacks.



Published by INSIGHT - Indonesian Society for Knowledge and Human Development