Study on Error Correction Capability of Simple Concatenated Polar Codes

Robin Sinurat, Muhamad Rizki Maulana, Khoirul Anwar, Nanang Ismail

Abstract


Polar codes ware mathematically proven to achieve the Shannon limit, where the error probability is reduced with the help of frozen bits. Since the frozen bits are detrimental in terms of transmission efficiency, this paper investigates the importance of the frozen bits and the possibility of being replaced by other protected bits via a concatenation with other outer channel coding schemes. We evaluate the impact of frozen bits to the capability of error correction of original Polar codes (OPC) and the concatenated Polar codes (CPC) in short block-length in terms of bit-error-rate (BER) performances. Repetition codes are used as outer channel encoder prior to the Polar codes and are divided into two schemes, i.e., (i) irregular repetition-CPC (IR-CPC) codes and (ii) regular repetition-CPC (RR-CPC) codes. We evaluate BER performances using computer simulations based on Log-Likelihood Ratio (LLR) with the modulation of Binary Phase Shift Keying (BPSK) under Additive White Gaussian Noise (AWGN) and frequency-flat Rayleigh Fading channels. We found that the OPC is better than the IR-CPC codes or RR-CPC codes for the same channel coding rate and block-length. This finding indicates that the frozen bits in OPC has strong contribution to the error correction capability of the Polar codes and may not be replaced by other bits even though the bits are protected by other channel coding schemes.

Keywords


BER; BPSK; IR-CPC; LLR; Polar codes; RR-CPC

Full Text:

PDF

References


C. E. Shannon, “A Mathematical Theory of Communication,” Bell Syst. Tech. J., vol. 27, no. 4, pp. 623–656, 1948, doi: 10.1002/j.1538-7305.1948.tb01338.x.

T. Specification, “TS 138 212 - V15.2.0 - 5G; NR; Multiplexing and channel coding (3GPP TS 38.212 version 15.2.0 Release 15),” vol. 0. ETSI, p. 100, 2018.

E. Arikan, “Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels,” IEEE Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, 2009, doi: 10.1109/TIT.2009.2021379.

I. Tal and A. Vardy, “List Decoding of Polar Codes,” IEEE Trans. Inf. Theory, vol. 61, no. 5, pp. 2213–2226, 2015.

M. Mondelli, S. H. Hassani, and R. L. Urbanke, “Construction of Polar Codes with Sublinear Complexity,” IEEE Trans. Inf. Theory, vol. 65, no. 5, pp. 2782–2791, 2019, doi: 10.1109/TIT.2018.2889667.

H. Si, O. O. Koyluoglu, and S. Vishwanath, “Polar coding for fading channels,” in 2013 IEEE Information Theory Workshop (ITW), 2013, pp. 1–5, doi: 10.1109/ITW.2013.6691216.

O. R. Ludwiniananda, K. Anwar, and B. Syihabuddin, “Investigating Bhattacharyya Parameters for Short and Long Polar Codes in AWGN and Rayleigh Fading Channels,” in International Conference on Islam, Science, and Technology (ICONISTECH), 2019.

J. Gao and R. Liu, “Neural Network Aided SC Decoder for Polar Codes,” in 2018 IEEE 4th International Conference on Computer and Communications (ICCC), 2018, pp. 2153–2157.

M. Rowshan, E. Viterbo, R. Micheloni, and A. Marelli, “Repetition-assisted decoding of polar codes,” 2019.

A. Neubauer, Coding Theory : Algorithms, Architectures, and Applications. Jin Xing Distripark, Singapore: John Wiley & Sons (Asia) Pte Ltd, 2007.

K. Anwar and T. Matsumoto, “Very simple BICM-ID using repetition code and extended mapping with doped accumulator,” Wirel. Pers. Commun., vol. 67, no. 3, pp. 573–584, 2012, doi: 10.1007/s11277-011-0397-1.

K. Fukawa, S. Ormsub, A. Tölli, K. Anwar, and T. Matsumoto, “EXIT-constrained BICM-ID design using extended mapping,” Eurasip J. Wirel. Commun. Netw., vol. 2012, pp. 1–17, 2012, doi: 10.1186/1687-1499-2012-40.

Fauzil Mufassa and Khoirul Anwar, “Extrinsic Information Transfer (EXIT) Analysis for Short Polar Codes,” in 3rd SOFTT, 2019.

I. M. Kim, B. H. Kim, and J. K. Ahn, “Secure polar coding with REP and XOR coding,” IEEE Commun. Lett., vol. 21, no. 10, pp. 2126–2129, 2017, doi: 10.1109/LCOMM.2017.2726523.

M. Seidl and J. B. Huber, “An Efficient Length- and Rate-Preserving Concatenation of Polar and Repetition Codes,” arXiv: 1312.2785v1 [cs.IT], no. 3, pp. 1–4, 2013.

T. Wang, D. Qu, T. Jiang, and S. Member, “Parity-Check-Concatenated Polar Codes,” IEEE Commun. Lett., vol. 7798, pp. 1–4, 2016, doi: 10.1109/LCOMM.2016.2607169.

C. Cao, T. Koike-Akino, Y. Wang, and S. C. Draper, “Irregular Polar Coding for Massive MIMO Channels,” 2017 IEEE Glob. Commun. Conf. GLOBECOM 2017 - Proc., vol. 2018-January, pp. 1–7, 2017, doi: 10.1109/GLOCOM.2017.8254937.

N. Hussami, S. B. Korada, and R. Urbanke, “Performance of polar codes for channel and source coding,” IEEE Int. Symp. Inf. Theory - Proc., vol. 2, pp. 1488–1492, 2009, doi: 10.1109/ISIT.2009.5205860.

J. Guo, M. Qin, A. Guillen I Fabregas, and P. H. Siegel, “Enhanced belief propagation decoding of polar codes through concatenation,” IEEE Int. Symp. Inf. Theory - Proc., no. 1, pp. 2987–2991, 2014, doi: 10.1109/ISIT.2014.6875382.

J. L. Kai Chen, Kai Niu, “Improved Successive Cancellation Decoding of Polar Codes,” IEEE Trans. Commun., vol. 61, no. 8, pp. 3100–3107, 2013, doi: 10.1007/978-981-15-0561-4_10.




DOI: http://dx.doi.org/10.18517/ijaseit.10.3.10677

Refbacks

  • There are currently no refbacks.



Published by INSIGHT - Indonesian Society for Knowledge and Human Development