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Abstract— Object detection in X-ray images is an interesting problem in the field of machine vision. The reason is that images from 
an X-ray machine are usually obstructed with other objects and to itself, therefore object classification and localization is a 
challenging task. Furthermore, obtaining X-ray data is difficult due to an insufficient dataset available compared with photographic 
images from a digital camera. It is vital to easily detect objects in an X-ray image because it can be used as decision support in the 
detection of threat items such as improvised explosive devices (IED’s) in airports, train stations, and public places. Detection of IED 
components accurately requires an expert and can be achieved through extensive training. Also, manual inspection is tedious, and the 
probability of missed detection increases due to several pieces of baggage are scanned in a short period of time. As a solution, this 
paper used different object detection techniques (Faster R-CNN, SSD, R-FCN) and feature extractors (ResNet, MobileNet, Inception, 
Inception-ResNet) based on convolutional neural networks (CNN) in a novel IEDXray dataset in the detection of IED components. 
The IEDXray dataset is an X-ray image of IED replicas without the explosive material. Transfer learning with data augmentation was 
performed due to limited X-ray data available to train the whole network from scratch. Evaluation results showed that individual 
detection achieved 99.08% average precision (AP) in mortar detection and 77.29% mAP in three IED components. 
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I. INTRODUCTION 

According to the data retrieved from the Global Terrorism 
Database (GTB) [1], there were 10,900 terrorist attacks 
around the world in 2017 that killed more than 26,400 
individuals. In the Philippines, 692 terrorist incidents were 
recorded with 496 deaths and 674 injuries. Armed assault 
and bombing have the highest number of incidents, which 
are 257 and 168, respectively. With this data, the Philippines 
was listed in the top 4 for the most number of terrorist 
incidents in 2017. To prevent terrorist incidents, many 
establishments, train stations, and airport terminals 
implemented tight security measures. Most train stations and 
airport terminals have an X-ray machine at the entrance to 
scan the bags of every passenger. The task of the operator is 
to look for threat objects like firearms, knife, and explosives. 

Improvised explosive device (IED) is commonly used by 
perpetrators in many countries to harm people. The main 
reason is that it is simple to construct, and most of its 
components can be acquired easily. IED is placed usually 
inside the bag, box, or any material that will conceal them. 
One way to identify IED is to scan the unknown object using 
an X-ray machine to see all the items inside. Then the 
operator, based on their knowledge decides whether the 
unidentified object is an IED or not. However, this process is 

tiresome and time-consuming. Furthermore, the possibility 
of missed detection increases over time due to exhausted 
personnel. As a solution, this paper used different object 
detection models based on convolutional neural networks 
(CNN) to detect the components of an IED in X-ray images.  

Some researchers used classic object detection algorithms 
such as histograms of oriented gradient (HOG) [2] to extract 
features in human detection and mean-shift based blob 
analysis and tracking to identify and track vehicles 
approaching an intersection in real-time [3]. In [4] used 
fuzzy logic to determine the class and color of the vehicle. 
However, due to the rapid development and robust 
performance of object detection algorithms based on CNN, 
this is now widely used. 

Detection of objects in an X-ray image is a challenging 
problem in computer vision. Some reasons are due to 
occlusion of the target object to other objects, self-occlusion, 
background clutter, and viewpoint variation due to object 
rotation. Another challenge is that certain datasets of X-ray 
images are not publicly available, and it is difficult to 
generate because the X-ray equipment is expensive 
compared to the digital camera. 

There are few studies about the detection of an object in 
X-ray images. In [5] used deep convolutional neural 
networks to detect multiple objects such as gun, laptop, knife, 
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camera, gun component, and ceramic knife. The 
architectures used for the detection of these objects are 
Sliding Window based CNN (SW-CNN) [6], Faster R-CNN, 
Region-based Fully Convolutional Networks (R-FCN) and, 
You Only Look Once (YOLO) V2 [7]. In [8] presented a 
multi-view branch-and-bound algorithm for multi-view 
object detection such as laptop, handgun, and glass bottle 
using standard local features in a bag of visual words (BoW) 
framework with linear structural Support Vector Machine 
(SVM). Other researchers introduced an active vision 
approach [9] and the Adapted Implicit Shape Model (AISM) 
[10] to detect threat objects in X-ray images in GDXray [11] 
database. Furthermore, [12] used an attention mechanism 
based on CNN to identify the prohibited objects in airport X-
ray images. Based on the aforementioned studies, the 
authors focused mostly on the detection of familiar objects 
such as laptops, cameras, and glass bottle, which does not 
pose any threats. This paper introduced the IEDXray dataset 
that can be used for the training in the detection of IED 
components. 

The contributions of this paper are: (a) the presentation of 
a novel IEDXray dataset, which is composed of X-ray 
images of essential IED components. (b) evaluation using 
different CNN-based object detection models and feature 
extractors for the detection of IED components in IEDXray 
dataset. To the best knowledge of the authors, this is the first 
paper that uses CNN in IED components detection in X-ray 
images. 

II. MATERIALS AND METHOD 

A. Transfer Learning 

Transfer learning is a technique of reusing a knowledge 
trained for a specific task (source domain) and apply it to 
another related or different task (target domain). This 
method is essential when the available data is limited like X-
ray images. Transfer learning is commonly used for deep 
learning, but it can also be used in another context like 
reinforcement learning. Preliminary experiments were 
conducted in [13], [14] to examine the effect of transfer 
learning in object detection and classification, respectively. 
The researchers in [15] defined transfer learning using the 
following notations: 

A domain  contains two components in (1), the feature 
space (  and marginal probability distribution  where 

. 
 

 
 
A task  contains two components in (2), the label 

space  and objective function  
 

 
 
Transfer learning aims to improve the learning of the 

target objective function  in target domain  using 
knowledge in the source domain  and source learning task 

, where  is a target learning task and , or 
. 

Fig. 1 shows a simple transfer learning pipeline. The 
source domain (left) is a detection model trained on a large 

database like Microsoft Common Objects in Context (MS 
COCO) dataset [16]. The convolutional features from its 
early layer contain generic features (i.e., edges, shapes, and 
textures) that can be extracted and transferred to the target 
domain. On the right part of the figure, the target domain is 
the new detection model to detect IED components in an X-
ray image. The convolutional features extracted from the 
source domain are frozen to avoid updating the weights. 
Then, the top layers of the target domain are trained with 
random weights. 

B. Object Detection Models 

1)  Faster R-CNN:  Faster R-CNN [17] is composed of 
two parts, the deep fully convolutional network and Fast R-
CNN [18] detector. The task of the deep fully convolutional 
network is to propose regions while a Fast R-CNN detector 
makes use of the proposed regions. Faster R-CNN highlights 
the introduction of Region Proposal Network (RPN) solving 
the slow proposal computation in Fast R-CNN. The RPN 
accepts any size of an input image and outputs a set of 
rectangular object proposals with an objectness score. 

2)  Single Shot Multibox Detector (SSD):  The SSD [19] 
is a single deep neural network object detector that uses 
multiple-scale feature maps and default boxes for detection. 
It eliminates bounding box proposals and feature resampling 
stage, as a result, increases the speed of detection compared 
with Faster R-CNN and YOLO [20]. This improvement 
became possible by using a small convolutional filter 
applied to feature maps to predict object categories, offsets 
in bounding box locations (default boxes) and separate 
filters for different aspect ratio detection. SSD allows the use 
of low-resolution images (300×300) and can achieve real-
time processing speed. 

3)  Region-based Fully Convolutional Networks (R-FCN):  
The R-FCN [21] proposed a position-sensitive score maps 
by using a set of specialized convolutional layers to solve 
the translation invariance in image classification and 
translation variance in object detection. These score maps 
represent one relative position of one object class. R-FCN 
used Residual Networks (ResNets) that has 100 
convolutional layers as a backbone but removes the average 
pooling layer and fully connected layer. The convolutional 
layers were used to compute feature maps. The model claims 
2.5-20 times faster than Faster R-CNN and still maintained 
accurate results. 

C. Feature Extractors 

There are four feature extractors used to extract low-level 
features in the input image such as Inception-v2, ResNet, 
Inception-ResNet-v2, and MobileNet. 

1)  Inception-v2: Inception-v2 [22] is an upgrade from 
previous version of inception called GoogleNet (Inception-
v1) [23]. In this version, batch normalization is introduced to 
prevent internal covariate shift that slows down the training 
due to low learning rates. Batch normalization can be done 
by normalizing the inputs in every layer before feeding to 
the activation function. Batch normalization allows the use 
of higher learning rates and thus, increases the training speed. 
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Furthermore, batch normalization acts as a regularizer 
similar to dropout that reduces overfitting. 

2)  ResNet: Although previous deep neural network 
architectures such as AlexNet [24] and VGGNet [25] 
perform well in an image recognition task, most of it cannot 
be trained deeper due to decreased in accuracy and increased 
computational cost. In [26], introduced a deep residual 
learning framework called residual networks (ResNet) that 
addresses the degradation problem in which as the depth of 
the network increases, the accuracy gets saturated and 
degrades rapidly. ResNet works by adding skip connections 
forming a residual block. Skip connections allow ResNet to 
train a deeper neural network (152 layers) without the loss in 
performance compared with a traditional network. 

3)  Inception-ResNet-v2: Inception-ResNet-v2 [27] is a 
hybrid model based on the inception module which uses 

residual connections (shortcut connection) from ResNet [26] 
that allows faster training of deep neural network and 
improves accuracy that roughly matches the computational 
cost of Inception-v4. This version is more accurate than 
Inception-ResNet-v1 in the ImageNet [28] dataset. 

4)  MobileNet: MobileNet [29] uses a depthwise 
separable convolution that enables a lightweight deep 
convolutional neural network and can be deployed in mobile 
applications. Depthwise separable convolution is a 
depthwise convolution followed by a pointwise convolution 
or simply 1 × 1 convolution. Two hyperparameters are 
introduced in MobileNet such as width multiplier and 
resolution multiplier to tune the model easily. This 
architecture is slightly less accurate than VGG-16 [23] but 
32 times smaller in terms of the number of parameters. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

III.  RESULTS AND DISCUSSION 

A. X-ray Image Acquisition 

Philippine Bomb Data Center (PBDC) and Explosive 
Ordnance Disposal and Canine (EOD/K9) Group of the 
Philippine National Police (PNP) provided the IED replicas 
that were used in the experiment. The IED replicas were 
placed several times in a HI-SCAN 6040-2is dual-view X-
ray machine [30] shown in Fig. 2. This X-ray machine can 
penetrate up to 35mm steel. The operator manually captures 
and saves the images of each IED replicas projected on the 
LCD screen. Also, to gather more X-ray images, there is a 
video recorder in front of the LCD screen that captures every 
projected X-ray images. 

B. IEDXray Dataset 

The IEDXray dataset is a collection of X-ray images with 
various IED replicas without explosive material. IED 
replicas have complete mechanisms of common IEDs, like a 
power source, wires, initiator, switch and container. Table 1 
shows the number of images in the IEDXray dataset. 
 

 
 

Fig. 2 HI-SCAN 6040-2is dual-view X-ray machine 
 

TABLE I 
NUMBER OF IMAGES IN IEDXRAY DATASET 

Description Number 
training images 1209 

test images 134 
Total 1343 

 

Fig. 1 Transfer learning pipeline 
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In colored images, the color varies depending on the type 
of material scanned in an X-ray machine. Orange represents 
organic substances; green represents indeterminate, while 
blue represents inorganic/metallic objects. Grayscale images 
were derived from colored images using grayscale image 
converter. Fig. 3 shows the sample IEDXray dataset in 
grayscale and colored images. 
 

 
Fig. 3 IEDXray dataset 

C. Dataset Annotation and Training 

After the image acquisition, dataset annotation was 
performed manually by drawing a bounding box or ground 
truth in each image and labeled according to its class. This 
paper focused on three IED components, such as the battery, 
mortar, and wires. Then, 90% of the data was used to train 
the IED detector, and 10% for testing to measure the 
detection performance of each model in an unseen set of 
images. This train-test split was chosen to maximize images 
used for training due to the small number of data. Table 2 
shows the number of labels (ground truth) used in training 
and testing. Wires have the highest number of ground truths 
because of many segments of wire was labeled per image. 

 

TABLE II 
NUMBER OF LABELS IN IEDXRAY DATASET 

Class Training Testing 
battery 1159 158 
mortar 529 29 
wires 1872 192 
Total 3560 379 

 
During the training, data augmentation was performed to 

compensate for the lack of available datasets. All object 
detection models and feature extractors were trained and 
evaluated with the use of data augmentation and without 
data augmentation. Fig. 4 shows the system setup. The 
augmentation used were horizontal flip, vertical flip, image 
scale, image rotation, and image crop. In a horizontal flip, 
images are randomly flipped horizontally 50% of the time. 
While vertical flip randomly flipped images vertically 50% 
of the time. Image scale randomly enlarges or shrinks 
images and keeps the aspect ratio. The minimum scale ratio 
used was 0.7, and maximum scale ratio was 2.1. Image 
rotation randomly rotates the image and detections by 90 
degrees counter-clockwise 50% of the time. Lastly, the 

image crop randomly crops the image. The object detection 
model and feature extractor combinations used in the 
experiments were based on the configuration described in 
[31]. 
 

 
Fig. 4 System setup 

D. Evaluation Metrics 

The classification and detection performance was 
measured using the PASCAL VOC 2010 metric [32]. The 
average precision  was computed by interpolation in all 
data points in the precision  × recall  curve and by 
getting the area under the curve (AUC). The mean average 
precision  in (3) is the average  of all classes  

 
 and  was calculated using (4) and (5), respectively. 

 shows the predictive power of the model or percentage of 
correct positive predictions while  shows the hit rate (true 
positive rate) or percentage of true positives detected among 
all relevant ground truths. 

 
 

 
The detection is considered correct if the intersection over 

union (IoU) is greater than 0.5 (IoU > 0.50). The IoU in (6) 
was calculated by dividing the area  of intersection (ground 
truth   predicted ) to the area of union (ground truth 

  predicted ). 
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During the training,  of each object detection 
model and feature extractor combinations are monitored 
every five minutes until the value stops improving. Fig. 5 
shows the evaluation progress. The black arrow indicates the 
maximum value of the  recorded in whole training. 
Some object detection models and feature extractors took a 
longer time to train than the others due to the complexity of 
the model. In all combinations, the maximum  recorded 
was 78.19% using Faster R-CNN + ResNet-101 with data 
augmentation. 

Table 3 shows the detection performance in each object 
detection models without using data augmentation with 
different feature extractor combinations. The subscript (g) 
(i.e., batteryg) in the table means that the test data is a 
grayscale image while in another table (Table 5), subscript 
(c) means that the test data is a colored image. The g 
comparison was based on last saved checkpoint while 

max was based on the highest  recorded during 
training. In using grayscale test images, the highest g 
was recorded in RFCN + ResNet-101 with 71.57% while the 
lowest g was recorded using SSD + Inception V2 with 
46.67%. The huge gap in the performance of Faster R-CNN, 

R-FCN compared with SSD models is the tradeoff between 
accuracy and speed. SSD is ideal in real-time applications, 

while Faster R-CNN and R-FCN are excellent when 
accurate detection is desired to identify objects. 

On the other hand, Table 4 shows the detection 
performance using data augmentation. The highest g 
was recorded in Faster R-CNN + ResNet-101 with 77.29% 
while the lowest g was recorded using SSD + 
MobileNet V1 with 54.31%. The results indicate an increase 
(at least 8.04%) in detection performance after using data 
augmentation. Fig. 6 shows sample detection using Faster R-
CNN + ResNet-101. The red bounding box indicates the 
ground truth. Fig. 6b shows false detection in the test image. 
The IED detector failed to detect the IED component as wire. 

When it comes to the performance in each class, mortar 
has the highest  which is 99.08% using R-FCN + 
ResNet101 (with and without data augmentation) while wire 
has the lowest which is 20.93% using SSD + MobileNet V1 
(with data augmentation). Based on the  results, it 
indicates that data augmentation can improve or worsen the 
individual detection performance depending on the model 
chosen. 

Fig. 5 mAP monitoring of different object detection models and feature extractor combinations 

Object detection model Feature extractor mAPg mAPmax batteryg mortar g wiresg 
SSD Inception V2 0.4667 0.4715 0.3071 0.8588 0.2342 
SSD MobileNet V1 0.5027 0.5107 0.2952 0.9811 0.2318 

R-FCN ResNet-101 0.7157 0.7268 0.6624 0.9908 0.4939 

Faster R-CNN Inception-ResNet 0.6248 0.6381 0.5527 0.9766 0.3452 
Faster R-CNN Inception V2 0.6829 0.6897 0.6091 0.9885 0.4510 
Faster R-CNN ResNet-101 0.7151 0.7343 0.6730 0.9885 0.4836 

 

TABLE III 
DETECTION PERFORMANCE WITHOUT DATA AUGMENTATION 
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Fig. 6. Sample detection using Faster R-CNN + ResNet-101 

 

Meanwhile, the mortar was accurately detected because 
its shape and size do not vary in the training data compared 
with wires that have different shape and sizes. Furthermore, 
the ground truth used for wires were not consistent. Fig. 7 
shows the sample detections of all object detection models 
and feature extractors that were evaluated in the study. 

In another experiment, colored images were evaluated 
using the trained grayscale IED detector with data 
augmentation to know the effect of color in detection 
performance.  

 
 

Fig. 7 Sample detections using data augmentation of (a) SSD + Inception V2, (b) SSD + MobileNet V1, (c) R-FCN + ResNet-101, (d) Faster R-CNN + 
Inception-ResNet V2, (e) Faster R-CNN + Inception V2, (f) Faster R-CNN + ResNet-101 

 
Table 5 shows the performance of the grayscale IED 

detector in a colored test set. The results show that the  
tend to decrease in all object detection and feature extractor 
combinations. The maximum decrease in  was recorded 
using SSD + MobileNet V1 (-12.49%). Therefore, the data 
trained on grayscale images should be tested only in 
grayscale images to maximize its performance because 
features that can be extracted in grayscale images are 
entirely different in colored images. 

TABLE V 
DETECTION PERFORMANCE WITH DATA AUGMENTATION  

(COLORED TEST SET) 

Object detection model Feature extractor mAP(c) 

SSD Inception V2 0.5300 
SSD MobileNet V1 0.4753 

R-FCN ResNet-101 0.6935 
Faster R-CNN Inception-ResNet 0.6252 
Faster R-CNN Inception V2 0.7026 
Faster R-CNN ResNet-101 0.7316 

Object detection model Feature extractor mAPg mAPmax batteryg mortar g wiresg 
SSD Inception V2 0.5729 0.6382 0.4434 0.9392 0.3360 
SSD MobileNet V1 0.5431 0.5837 0.4836 0.9363 0.2093 

R-FCN ResNet-101 0.7297 0.7649 0.6603 0.9908 0.5381 

Faster R-CNN Inception-ResNet 0.6880 0.6880 0.6326 0.9802 0.4512 
Faster R-CNN Inception V2 0.7474 0.7541 0.7077 0.9851 0.5493 
Faster R-CNN ResNet-101 0.7729 0.7819 0.7765 0.9897 0.5524 

 

TABLE IV 
DETECTION PERFORMANCE WITH  DATA AUGMENTATION 
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IV.  CONCLUSION 

This paper introduced a novel IEDXray dataset, which is 
composed of X-ray images of IED replicas. The IEDXray 
dataset was used as training data for the detection of IED 
components in X-ray images. State-of-the-art CNN-based 
object detection models and feature extractor combinations 
were evaluated and compared its performance using the 
IEDXray dataset. Experiment results showed that Faster R-
CNN + ResNet-101 achieves the highest value with 77.29% 

 in the test set using transfer learning with data 
augmentation. While in individual detection performance, R-
FCN + ResNet-101 makes 99.08%  in the test set. In 
another experiment using a colored test set, the detection 
performance decreased by a maximum of 12.49% using SSD 
+ MobileNet V1. 

For future works, an additional class of components and 
data will be included in order to train the IED components 
detector from scratch. 
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