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Abstract— The large need for small area data and limited auxiliary information drive the development of small area estimation 
methods with auxiliary information comes from survey data. The consequence of the existence of the auxiliary variables from survey 
data is the development of measurement error models. Survey data is used as auxiliary variables that are taken randomly so that the 
data is considered to be stochastic. Thus, the measurement error model is assumed to be structural. Meanwhile, auxiliary information 
or covariates does not always have a normal distribution but sometimes contain outliers so the assumption of the t-distribution is 
considered to be more appropriate. Therefore, we use the moment-method to estimate the parameters and develop an empirical 
Bayes-EB predictor in a nested error regression model with measurement errors in the area-level covariates. In addition, the 
covariate in this model is assumed in the t-distribution which were previously always considered normal. Using simulation studies, we 
can report the performance of EB predictor under true covariates and measurement errors assumed to be t-distributions based on 
mean squared prediction errors (EMSPE). The results show that the model we developed leads to a significant increase in efficiency 
compared to EB predictors previously proposed. Furthermore, this approach is applied in National socio-economic survey (Susenas) 
data in Malang Regency with the aim of predicting mean years of schooling by districts using monthly per capita household 
expenditure data as the covariate variables that are considered to have the t-distribution. 
 
Keywords— structural measurement error in covariate; empirical bayes predictor; nested error regression; t-distribution. 
 
 

I. INTRODUCTION 

In modern era, the need of complete and up to date data 
and information are getting higher. Problems in developing 
countries such as Indonesia are the data and information that 
can satisfy those needs are not available. Data can be 
obtained from census or registration and surveys. The 
problem of registration data is they are incomplete and less 
recent information. Census data can be obtained once in 
every ten years. Meanwhile, the most recent and complete 
survey data are very limited since the sample was designed 
only for national or provincial level. The cost and time 
efficiency are the common reasons why the survey is not 
designed to estimate the smaller area [1]. One way to 
overcome this problem is small area estimation method [2]. 
The small area is not only limited to the administrative area 
but also to social demographic groups and so on. Principally, 
small area estimation methods use the small sample data 
(even no sample at all) to estimate the small areas by buying 
the related information robustness of the area as auxiliary 
information [3]. Since the basic assumption that must be 

satisfied is that there is an error in auxiliary information 
(also called the covariate variable in the model), the data 
used is census or registration data. Considering the census or 
registration data that are incomplete and less recent, a small 
area estimation method using survey data as auxiliary 
information was developed. The consequence of the use of 
survey data as the auxiliary information is that it should 
contains measurement errors. Measurement errors is defined 
as the difference in value between measurement value and 
the actual values in the survey or experiment [4]. Therefore, 
a small area estimation method with measurement errors on 
the covariate variables was developed. The development 
review of small area estimation model with measurement 
errors can be seen in previous study [5], [6]. This method is 
expected to answers the problem in Indonesia that is the big 
need of small area data and the limited availability of 
complete and up to date auxiliary information.  

One of the models that is developed in the small area 
estimation method is the nested error regression model [7], 
[8]. The nested regression model, known as the unit level 
model requires the auxiliary variable in the unit level and 
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does not contain measurement errors. There are 3 prediction 
methods in the small estimation area model: Best Linear 
Unbiased Prediction (BLUP), Empirical Bayes (EB), and 
Hierarchical Bayes (HB). The small area estimation model 
using the nested error regression model with measurement 
error on the auxiliary variable firstly introduced by Ghosh, 
Sinha, and Kim (GSK) [9]. The method used is EB and HB 
which is used to estimate the small area means where the 
covariate variable assumed random and normally distributed 
in the error measurement model and called structural 
measurement error model. Covariate variables are available 
in the area level, and measurement error variance is 
unknown. The EB estimation method used is based on, 
which applies to the finite population [10]. The deficiency of 
the GSK model is that the estimation model only considers 
the response variables without considering the covariate 
variables. Furthermore, the same model and EB method with 
a finite population by assuming the measurement error 
variance are known and covariate variables available at the 
unit level [11]. On the other hand, a study developed nested 
error regression model with measurement error which 
assume covariate variable in the area level but the estimation 
model considering the covariate variable and called Torabi, 
Datta, and Rao (TDR) model [12]. The method of moment is 
used in parameter estimation while the prediction uses EB. 
This model is more efficient than the GSK model.  

Another development of the nested error regression model 
with measurement errors on the covariate variables with the 
HB method was carried out [13]. The difference lies in the 
prior determination of the estimation parameter model, 
which called GSK model by using prior Inverse Gamma 
(IG). This study uses Jeffrey's prior, which is considered 
more suitable for the model used, and the explanation is 
more acceptable for official statistics. The Bayes pseudo-
Empirical method was developed in the nested regression 
model with measurement errors in the covariate variable [14] 
of the TDR base model, which develop using sample survey 
weighting. The results show that the method used is 
consistent with the increase in sample size. The nested error 
regression model with measurement errors in the covariate 
variables was also developed under the conditions of the 
binomial spread response variable [15], [16]. This model is 
also called the unit level logistics model with measurement 
errors on the auxiliary variables. The parameter estimation 
model used is the Laplace approach in the maximum 
likelihood method, and the prediction method used the 
Minimum Mean Square Error (MMSE) method.  

In the previous model, the nested regression error model 
with measurement errors in the covariate variables still used 
one covariate. The previous study [17] investigated a model 
that uses more than one covariate variable, both containing 
or not containing measurement errors and their effects on 
predictions produced by the EB method using the method of 
moment as parameter estimation. Covariates variables which 
do not contain measurement errors can be derived from other 
survey data with larger sample sizes. The result is that the 
EB predictor is more efficient when the sample size of the 
auxiliary variable which is assumed contain no measurement 
error is greater.  

All the studies that have been discussed assumed that the 
covariate variable is normally distributed but it is different in 

reality. One known distribution in modeling is t-distribution. 
This distribution is used when there is outlier’s data or if the 
data has long tailed distribution [18], [19]. The subject of 
this paper is to examine the small area estimation under a 
unit-level model with measurement errors in the covariate 
variables which has t-distribution. This study is expected to 
solve the problem of auxiliary information using survey data 
as a covariate variable which contains outlier with a unit-
level small area estimation model. The model is developed 
based on the TDR model. Furthermore, this paper is 
structured as follows: Chapter II Material and Method 
explains the TDR model and TDR model with auxiliary 
variables which have t-distribution or t-TDR model. Chapter 
III Results and Discussion explains the simulation and 
application of data to test the goodness of the basic and 
developed model. The general conclusion of the results of 
this study is explained in Chapter IV. 

II. MATERIAL AND METHOD 

Consider a finite population, there are �  area labelled 1, … , � and let �� denote the known population size of the �th area. We denote by ��	  the response of the 
th unit in 
the �th area �
 = 1, … , ��; � = 1, … , ��. A sample of size �� is drawn from the �th area. Without loss of generality, 
we denote the sampled units by 1, … , ��  �� = 1, … , �� . 
Throughout, we will use the notations ����� = ���� , … , ������

, ����� = ������� , … , ������
, ��� = ������� , ������� , and ����� = ����, … , ������

 with ����� 
and �����  corresponding to the sample unit and ����� corresponding to the non-sample unit. The basic 

problem in finite population sampling is inference about ����� 
conditional on ����� and ����� [10]. More specifically, we are 
interested in the prediction of finite population means 

�� = 1��  ��	
��

	!�            �� = 1, … , �� 

given the data.  

A. Empirical Bayes in TDR Model 

According to [12], we assume the superpopulation model ��	 = #$ + #�&� + '� + (�	  �
 = 1, … , ��� (1) ��	 = &� + )�	       �� = 1, … , ��  (2) 
 
where ��	 , ( � = 1, … , �; 
 = 1, … , �� ) is the response 
variable of concern of the kth unit in the dth area, ��	 is the 
covariate variable which is assumed to be linearly related 
and is the result of the survey, &�  is the actual area level 
covariate variable but it is unknown, )�	 is the measurement 
error, �#$, #�� is the regression coefficient, '� is the random 
effect area, and  (�	 is the model error. It is assumed that &�, '� , (�	  and )�	  are mutually independent with &� ~+.+.���-., /.0� , '� ~+.+.���0, /20� , (�	 ~+.+.���0, /30�  and )�	 ~+.+.���0, /40� . The available data consist of ���	 , ��	�, �
 = 1, … , ��; � = 1, … , �� . Also, we write 5 = �#$, #�, -., /20, /30, /40, /.0 �� . An alternative way to 
express is 
(i) ��	 = 6� + (�	  (� = 1, … , �; 
 = 1, … , ���  where (�	 

are i.i.d ��0, /30�   
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(ii)  6� = #$ + #�&� + '�  (� = 1, … , ��  where '�  are i.i.d ��0, /20�  
(iii)  ��	 = &� + )�	  �
 = 1, … , ��; � = 1, … , �� where )�	 

are i.i.d ��0, /40� and &�~��-. , /.0� 
In this way, it is possible to identify equation (1) and 
equation (2) as a Bayesian model. 

From TDR model, the Bayes predictor of ��  is linear 

function of �� = ������� , ��������
 and the independence 

sample of ��� , ���, � = 1, … , � for known 5 , we can get 

Bayes predictor �7�8 = 9���:�����, �����, 5�  based on the 

sample data by first deriving the Bayes predictor of ����� 
given �����, ����� and  5. 

Under the nested error model given by equation (1) and 
equation (2) the Bayes predictor of �� is given by �7�8 = �1 − ℎ�=���>� +ℎ�=��#$ + #�-.� + ℎ�=� ? ��@AB@CBD��@ABE #���>+ − -.� (3) 

Then the posterior variance of �� is F��7�8� = ℎ�0 =� ?#�0/.0 + /20 − ��G�B@AH@CBD��@ABE + ��� ℎ�/30 (4) 

where �>� = ��I� ∑ ��	��	I� ; =� = @KB�@CBD��@AB���G�B@AB@CBD���@LBD@KB��@CBD��@AB�   (5) 

and �>� = ��I� ∑ ��	��	I� , ℎ� = ��� − ��� ��⁄  with ℎ�  is the 
finite population correction fraction. 

The EB predictor �7�N8  ��  is obtained by replacing 5  in 
equation (4) by a consistent estimator 5O. We use the method 
of moments estimators 5O . A consistent estimator =P�  =�  is 
obtained from formula (5) for =� by replacing 5 by 5O. The 
EB predictor �� is given by �7�N8 = �1 − ℎ�=P���>� +ℎ�=P��#O$ + #O��>� + ℎ�=P� ? ��@QAB@QCBD��@QABE #���>� − �>�   (6) 

B. Empirical Bayes in t-TDR Model 

From the model in equation (1) and equation (2), we 
developed a new approach for the TDR model by assuming 
covariate variables with a t-distribution measurement error 
or called the t-TDR model. The t-TDR model assumed that  &� , '�  (�	  and )�	  are mutually independent with &� ~+.+.�R�-., /.0, S�  '� ~+.+.���0, /20� , (�	 ~+.+.���0, /30�  and )�	 ~+.+.���0, /40, T�. The difference of the t-TDR model is the 
assumption of the actual covariate variable (&� ) and the 
measurement error variable that follows the t-distribution. 
Based on the nature of the variance in t-distribution, 
estimation of the variance multiplied by the degrees of 
freedom minus 2. Therefore, in this case, the t-distribution 
used in the model is minimum with 3 degrees of freedom 
[18]. Furthermore, the posterior distribution compiler, which 
was previously assumed to follow the normal distribution, in 
the t-TDR model, the distribution of x and δ is changed to 
the t-distribution. For known 5, the Bayes predictor of �� in 
t-TDR model given by: 

 �7�8 = 9���:�����, �����, 5� 

  = �1 − ℎ�=���>� + ℎ�U��#$ + #�-.� 

+ℎ�U� V ��� WWXB�@AB� YYXB�@CBD��� WWXB�@ABZ #���>+ − -.�  (7) 

Then the posterior variance of �� is F���:�����, �����, 5� 

= ℎ�0 U� [#�0 \ SS − 2^ /.0 + /20

− ��#�0 � SS − 2�0 /._� TT − 2� /40 + �� � SS − 2� /.0` 

+ ��� ℎ�/30                 (8) 

 
where 

U� = @KBa� YYXB�@CBD��� WWXB�@ABb
��G�B� WWXB�@AB� YYXB�@CBD���@LBD@KB�a� YYXB�@CBD��� WWXB�@ABb    (9) 

We use the method of moments estimators, 5O, proposed 
by TDR. Let ccde = ∑ ∑ ���	 − �>��0��	f�!�  ccdg =∑ ∑ ���	 − �>��0��	f�!� , and hcde = ccde ��� − ��⁄  hcdg = ccdg ��� − ��⁄  �� = ∑ ��f�!�  is the total sample 
size. Then /30 and /40 consistently estimated by /740 = hcde;  /730 = hcdg  (10) 
Further, #$, #�, and -. are consistently estimated by #O� = ∑ ��g>��e>�Ie>�i�j��kl8AIklmA��fI��   (11) #O$ = �> − #O��>; -. = �>   (12) 
where �> = ��I� ∑ ���>�f�!� ; �> = ��I� ∑ ���>�f�!�  
and hcUe = �� − 1�I� ∑ ����>� − �>�0f�!� . 
The remaining parameters /.0  and /20  are consistently 
estimated by /7.0 = max q0, �fI��ri �hcUe − hcd.�s  (13) /720 = max q0, �fI��ri �hcUg − hcdg� − #O�0/7.0s (14) 

where hcUg = �� − 1�I� ∑ ����>� − �>�0f�!� and tf =�� − ∑ ��B��f�!� . 

The consistent estimator UO� U�  is obtained from equation (9) 
for U�  by replacing 5 by 5O. The EB predictor �� is given by �7�N8 = �1 − ℎ�UO���>� + ℎ�UO��#O$ + #O��>� +ℎ�UO� V ��� WWXB�@QAB� YYXB�@QCBD��� WWXB�@QABZ #���>� − �>�      (15) 

 

III.  RESULT AND DISCUSSION 

In this section, the simulation is conducted by assuming 
that x and δ have t-distribution with zero mean value, 
variance /.0 , /40  and degree of freedom S  and T . For the 
application, data of the National socio-economic survey 
(Susenas) in Malang Regency March 2015 is used to obtain 
data of mean years of schooling by sub-district based on the 
direct estimator, TDR model, and t-TDR model. The number 
of estimated sub-district is 33 sub-districts. 
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A. Simulation 

In this paper, the simulations are conducted to prove the 
superior performance of the proposed model and compare it 
to the basic model. The EB predictor of the TDR model in 
equation (6) and the proposed model called the t-TDR model 
in equation (15). The comparisons are also associated with 
the sample size ���� . Previously, a finite population are 
generated with population size of 2400 which are divided 
into 18 areas with sizes 50, 250, 50, 100, 200, 150, 50, 150, 
100, 150, 100, 50, 250, 200, 150, 50, 200, and 150. First, set 
the parameter values #$ , #� , /(2 , /'2 , /40 , /.0 . The variable 
response population ��	  is obtained from data generation 
with #$ =100, #� =2, /(2 =10, /'2 =100, /40 =225, -& =10 dan /.0 =9, with degrees of freedom p=q=3. A sample of 2 
percent of each population is taken with simple random 
sampling to generate pairs of sample data of 18 groups. Thus, 
for each group (area), there are sample sizes ���� of 1, 5, 1, 
2, 4, 3, 1, 3, 2, 3, 2, 1, 5, 4, 3, 1, 3, 2. To find the effect of 
sample size, besides using this sample size ����, sampling is 
also done 5 times �5��� for each group (area).  

A data set of B=5000 that is mutually independent and 

has a normal distribution is generated for q'��G�; � =1, … , �s , q(�	�G�;  
 = 1, … , ��s  with zero mean value and 

determined variance is /20  and /30 . Furthermore, also 

generated B=5000 mutually independent set for q&��G�; � =1, … , �s  which has t-distribution with determined mean 

value is -. , variance /.0 , and degree of freedom S  and q)�	�G�; 
 = 1, … , ��s has t-distribution with zero mean value 

and variance /40  and degree of freedom T . From the 

generated data, obtained B=5000 data sets q���	�G�, ��	�G��; � =1, … , �; 
 = 1, … , ��s  , which are obtained from the 

equation: ��	 = #$ + #�&� + '� + (�	  and ��	 = &� + )�	 . 
Next, the mean value of # the population obtained from 

 

���G� = 1��  �+v�G���
	!�  

For each population, the sample q���	�G�, ��	�G��; � =1, … , �; 
 = 1, … , ��s  is taken with sample sizes ��  and 

5�� with simple random sampling. The model parameter 5 
is estimated using the method of the moment based on the 
formula (10)-(14) and for each #  �7+�wx  dan �7+yI�wx  are 
estimated. To compare the performance TDR model and t-
TDR model, empirical Mean Square Prediction Error 
(EMSPE) calculated by the formula: 
 

9�Sz{z|}~ hc�9��7��wx� = 1U  ��7��wx�G� − ���G��0�$$$
G!�  

9�Sz{z|}~ hc�9��7�y�wx� = 1U  ��7�yI�wx�G� − ���G��0�$$$
G!�  

 
Table 1 shows that when variables &  and )  have the 

smallest sample size ���� and assumed have a t-distribution 

with a degree of freedom 3, the empirical MSPE value of the 
t-TDR model is better than TDR model for all areas. Table 1 
also shows that substantially the t-TDR estimator is more 
efficient than the TDR model estimator with relative 
efficiency value ranging from 100.38% to 107.57%. The 
efficiency value is calculated from 
EMSPE(�Q����)/EMSPE(�Q��−���).  

 
TABLE I 

EMPIRICAL MSPE OF �7��wx  AND �7�yI�wx   

Area d nd EMSPE(�Q����) EMSPE(�Q��I���) 
1 1 10.0892 9.7823 
2 5 2.0370 1.9764 
3 1 10.2135 10.0437 
4 2 5.0989 5.0467 
5 4 2.4695 2.4545 
6 3 3.3941 3.3434 
7 1 10.5041 10.1479 
8 3 3.1974 3.1690 
9 2 5.0187 4.9882 
10 3 3.3609 3.3123 
11 2 4.9268 4.8804 
12 1 10.0517 9.9514 
13 5 1.9306 1.9209 
14 4 2.4822 2.4599 
15 3 3.3127 3.2793 
16 1 11.1073 10.3254 
17 3 2.4581 2.4488 
18 2 3.3296 3.3029 

 
Fig. 1 shows the effect of an increase in the t-TDR model 

with a degree of freedom 3 from the sample size �� to 5��. 
The additional sample size to the t-TDR model substantially 
more efficient when we use a larger sample size (5��) than 
the same sample size (��). Simulation results show that the 
increase of the sample size can reduce the value of EMSPE 
between 73.16% to 79.93% or an average of 77.58%.  
 

 
Fig. 1  Empirical MSPE of t-TDR Model with a degree of freedom 3 and 
sample size ni and 5ni 

B. Application 

The variables used in the model are mean years of 
schooling (y) and monthly per capita expenditure for 
consumption (X). Both are used in March 2015 Susenas 
conducted by Badan Pusat Statistik (BPS). Susenas data 
collection is conducted 2 times a year in March and 
September. The survey sampling of March Susenas is 
designed to estimate the parameter at the 
regency/municipality level while the September Susenas is 
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designed to estimate the parameter at the provinces level. 
The research observation unit is the household, and the area 
level to be estimated is the sub-district level. We select the 
March 2015 period of Susenas because of the availability of 
small samples to estimate sub-district levels for each sub-
district and the availability of complete data of sub-district 
household populations required by the small area estimation 
model. Since the model relates to the measurement errors in 
the covariate variable (X) and the monthly per capita 
expenditure data, which becomes the covariate variable is 
obtained from the respondent interview, and it is not coming 
from the measurement results, it is assumed that there is a 
measurement error. In addition, since the monthly per capita 
expenditure for consumption is obtained from survey data by 
selecting a random sample, the measurement error model is 
assumed to be the structural model. This research covers all 
sub-districts (33 sub-districts) in Malang Regency, East Java 
Province. 
 

 
(a) Monthly Household per Capita Expenditure in 16 Sub-District 

 
(b) Monthly Household per Capita Expenditure in 17 Sub-District 

Fig. 2 Monthly Household Per capita Expenditure by Sub-District in 
Malang Regency, 2015. 
 

Mean years of schooling of population aged 25 years and 
above is one indicator of the compilation of the Human 
Development Index (HDI), and it is also one of the 
indicators that are monitored by Sustainable Development 
Goals (SDGs). This indicator describes equitable 
development in the education sector of a region. The higher 
mean years of schooling shows the success of the 
development of education. Therefore, this indicator is mostly 
needed until the smallest administrative area since it plays a 
vital role in evaluating equitable development in education. 
The small area data can show the area where the education 

level is still low. Thus, the right target policies can be 
formulated to accelerate the distribution of education. The 
direct estimator value of mean years of schooling is obtained 
by selecting the population aged 25 years and above of a 
region and then converting the highest level of education and 
the highest grade ever completed to the duration of 
education (years). Furthermore, mean years of schooling of 
populations aged 25 years and above is obtained by 
summing mean years of schooling of populations aged 25 
years and above and dividing it by the number of 
populations aged 25 years and above in that area. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3 Mean Years Schooling Prediction based on Direct Estimate, TDR 
Model, and t-TDR Model by Sub-District in Malang Regency, 2015. 

c. t-TDR Model 

a. Direct Estimate 

b. TDR Model 
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TABLE II 
MEAN YEARS OF SCHOOLING PREDICTION BASED ON DIRECT ESTIMATE, 

TDR MODEL, AND T-TDR MODEL BY SUB-DISTRICT IN MALANG REGENCY, 
2015  

Sub-District Sample 
size 

Predicted 

Direct �Q���� �Q��I��� 

1.   Donomulyo 30 7.4478 7.3934 7.3932 
2.   Kalipare 30 6.0758 6.0442 5.9453 
3.   Pagak 20 4.9375 4.9033 4.4540 
4.   Bantur 29 4.9552 5.0157 4.6952 
5.   Gedangan 17 4.2791 4.8885 4.3482 
6.   Sumbermanjing 40 5.9036 6.0190 5.8968 
7.   Dampit 59 5.6149 5.3335 5.1693 
8.   Tirto Yudo 29 6.6774 6.5699 6.5547 
9.   Ampelgading 8 4.7143 4.9958 3.9600 
10. Poncokusumo 29 5.7059 5.7227 5.5446 
11. Wajak 30 7.1714 6.7337 6.7669 
12. Turen 69 7.5364 7.5058 7.5960 
13. Bululawang 20 8.4615 7.9585 8.3572 
14. Gondanglegi 18 7.1429 6.5112 6.5185 
15. Pagelaran 39 5.8434 5.8330 5.7401 
16. Kepanjen 56 7.5447 7.3392 7.4294 
17. Sumber Pucung 29 8.8154 8.0344 8.3394 
18. Kromengan 10 7.5000 7.1994 7.5710 
19. Ngajum 10 6.0000 6.4182 6.3013 
20. Wonosari 19 6.4595 6.3081 6.2288 
21. Wagir 47 6.3364 6.3684 6.3252 
22. Pakisaji 30 7.6557 7.3970 7.5708 
23. Tajinan 28 5.8525 6.1820 6.1208 
24. Tumpang 30 6.7015 6.1768 6.1144 
25. Pakis 57 7.5360 7.1881 7.2626 
26. Jabung 30 4.9577 5.1202 4.8219 
27. Lawang 34 7.6104 7.1693 7.2280 
28. Singosari 65 7.8562 7.4663 7.5283 
29. Karangploso 40 7.1190 7.0323 7.1321 
30. Dau 9 7.3846 6.9824 7.1097 
31. Pujon 50 6.6535 6.7344 6.7350 
32. Ngantang 19 6.1667 6.2757 6.2024 
33. Kasembon 10 8.2500 7.6643 8.2932 
 
In contrast to the direct estimator, mean years of 

schooling data calculated by the model based on individual 
data. So that the mean years of schooling, in this case, is the 
number of mean years of schooling of each person aged 25 
years and above in dth sub-district divided by the number 
person aged 25 years and above in dth sub-district. The 
auxiliary variable is selected from the monthly per capita 
expenditure for food consumption and non-food 
consumption in a month. This data is obtained by summing 
the total household expenditure for food consumption and 
non-food consumption in a month divided by the number of 
household members. The selection of auxiliary variables 
based on the theory that the expenditure reflects the level of 
household welfare. Higher household expenditure shows a 
higher level of household welfare. Furthermore, higher 
welfare is positively correlated with the education 
improvement of household members. High education is 
reflected by the higher mean years of schooling of the 
household members. In addition, per capita, household 
expenditure tends to have a very spread distribution. In other 
words, this data has outliers data or long-tailed distribution. 
Per capita expenditure model assumes that per capita 
expenditure data has t-distribution [20]. Therefore, the 

auxiliary variables used in this study have t-distribution. Fig. 
2 shows that variable X is assumed to have t-distribution 
with a degree of freedom 3 considering the outliers in almost 
all sub-districts. Thus, Malang Regency is chosen to apply 
the model proposed in equations (1) and (2). 

Table 2 and Fig. 3 shows mean years of schooling 
prediction obtained from the direct estimator, the EB 
estimator with the TDR model, and the EB estimator with 
the t-TDR model. The estimator value of the TDR model 
and t-TDR model has the same pattern. It means that the 
estimation value of the TDR model is higher than the direct 
estimator value, likewise with the t-TRD model, although 
the difference is relatively smaller. The prediction result 
shows that the highest mean years of schooling in Malang 
Regency with a direct estimate and t-TDR model are Sub-
district Bululawang. Using the TDR model, it is obtained 
that the highest mean years of schooling in Malang Regency 
is Sub-district Sumber Pucung. The prediction result shows 
that the lowest mean years of schooling in Malang Regency 
with the direct estimate and TDR model is Sub-district 
Gedangan. Using the t-TDR model, it is obtained that the 
lowest mean years of schooling in Malang Regency is the 
Sub-district Ampelgading. 

 

TABLE III 
MEAN SQUARED PREDICTION ERROR (MSPE) FROM TDR MODEL AND         

T-TDR MODEL BY SUB-DISTRICT IN MALANG REGENCY, 2015 

Sub-District 
MSPE 

Direct �Q���� �Q��I��� 

1.   Donomulyo 10.3353 0.0147 0.0180 
2.   Kalipare 7.5172 2.1399 0.0180 
3.   Pagak 12.5279 2.8212 0.0256 
4.   Bantur 9.1040 2.1908 0.0185 
5.   Gedangan 10.1107 3.1489 0.0295 
6.   Sumbermanjing 16.1613 1.7626 0.0142 
7.   Dampit 16.1432 1.3694 0.0103 
8.   Tirto Yudo 10.3205 2.1899 0.0185 
9.   Ampelgading 18.5143 5.0350 0.0588 
10. Poncokusumo 10.9868 2.1926 0.0186 
11. Wajak 13.0137 2.1413 0.0180 
12. Turen 18.0903 1.2427 0.0091 
13. Bululawang 14.4495 2.8235 0.0256 
14. Gondanglegi 23.8908 3.0328 0.0281 
15. Pagelaran 15.5483 1.7904 0.0145 
16. Kepanjen 18.6271 1.4144 0.0108 
17. Sumber Pucung 24.3404 2.1881 0.0185 
18. Kromengan 26.1667 4.4174 0.0478 
19. Ngajum 5.3333 4.4190 0.0478 
20. Wonosari 23.7553 2.9199 0.0267 
21. Wagir 11.6014 1.5822 0.0124 
22. Pakisaji 17.6295 2.1412 0.0180 
23. Tajinan 15.7945 2.2415 0.0191 
24. Tumpang 22.1520 2.1409 0.0180 
25. Pakis 16.9120 1.4000 0.0106 
26. Jabung 11.5553 2.1408 0.0180 
27. Lawang 28.5041 1.9673 0.0162 
28. Singosari 24.3999 1.2907 0.0095 
29. Karangploso 15.4796 1.7609 0.0142 
30. Dau 17.3662 4.7068 0.0527 
31. Pujon 15.2917 1.5181 0.0118 
32. Ngantang 10.0447 2.9226 0.0268 
33. Kasembon 9.5870 4.4149 0.0478 

 

1541



Table 3 reports the values of MSPE(�Q���� ) based on 

equation (4), the value of MSPE(�Q��−���) based on equation 
(8), and MSE of direct estimation based on standard error. It 
is obviously presented in Table 1 that MSPE(�Q��−��� ) is 

substantially smaller than MSPE(�Q����) and MSE of direct 

estimation. The reduction in MSPE by using �Q��−���  over �Q���� the range from 8.82% to 13.51% in 32 sub-districts. 
The different condition occurs in Sub-district Donomulyo 
since MSPE(�Q��−���) is greater than MSPE  (�Q����) which is 
increased to 18.74%. Hence, the use of the assumption of t-
distribution that considering outlier in covariate leads to 
significant improvement in efficiency relatively than using 
the normal distribution. In other words, since variable X is 
the household per capita expenditure whose distribution is 
relatively spread, the t-assumption is appropriate, and the 
performance of the t-TDR model is better than the TDR 
model, which assumes the normal distribution of variable X. 

IV.  CONCLUSIONS 

Outlier data can lead to violations of the normality 
assumption. Outlier data may appear on covariate variables 
that are based on survey data, which are assumed to contain 
measurement errors. Outliers in a small area estimation 
model can come from the unit level. This research is 
successful in developing a small area estimation model with 
measurement errors on the t-distribution based covariate 
variable that can overcome the problem of outliers. 
Simulation studies using the EB method show that when the 
covariate variable contains measurement errors and has t-
distribution, EMSPE small area estimation models with 
normal distribution-based measurement errors (TDR models) 
are greater than small area estimation models with t-
distribution based measurement errors ( t-TDR model). 
Therefore, in general, it is shown that the t-TDR model is 
more efficient than the TDR model. The application data 
used to predict mean years of schooling with monthly per 
capita expenditure for consumption as the covariate 
variables which is assumed contain measurement errors with 
a t-distribution. It also shows that the performance of the t-
TDR model is better than the TDR model. 
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